MATH 532 EXERCISES 7

A. ZEYTİN

- (1) Find the p-adic norm and the p-adic expansion of :
 - ▶ 15, -1, -3 in Q_5
 - ▶ 6, 1/3in Q₃
 - ► 1/3in **Q**₅
 - ▶ 1/6, 1/11 in Q₇
- (2) Find the p-adic expansion of $\frac{1}{2}$ in \mathbf{Q}_{p} of an odd prime number p.
- (3) Show that in $\mathbf{Q}_7[X]$ we have : $X^2 2 = (X 3)(X 4)$.
- (4) Let $f(X) = X^3 2 \in \mathbf{Q}_5[X]$. Show that there is a unique cube root, α , of 2 in \mathbf{Z}_5 with $\alpha \equiv 3 \pmod{5}$. Find first few terms of the canonical expansion of $\alpha \in \mathbf{Q}_5$.
- (5) Recall that $\mathbf{Z}_p := \{ \alpha \in \mathbf{Q}_p \mid |\alpha|_p \leq 1 \}.$
 - ► Show that **Z**_p is a ring.
 - Show that the units in Z_p are precisely the sequences (a_n)[∞]_{n=0} for which a₀ ≠ 0 by constructing the inverse of such an element.
 - Show that \mathbf{Z}_p is uncountable. (This means in particular that \mathbf{Z}_p is much much bigger than \mathbf{Z} .)
 - ► Let $f(X) \in \mathbf{Z}[X]$. Show that if there is some element $\alpha \in \mathbf{Z}_p$ with $f(\alpha) = 0$, then for any positive integer r, there is some $x_r \in \mathbf{Z}/p^r\mathbf{Z}$ with the property that $f(x_r) = 0$ in $\mathbf{Z}/p^r\mathbf{Z}$.