Université Galatasaray, Département de Mathématiques 2018 - Spring Semester – Math 532 - Selected Topics in Algebraic Geometry Final Exam, 28 May 2018 – Ayberk Zeytin, 180 minutes Name & Surname: _______Sign: _____

Question:	1	2	3	Total
Points:	14	2	10	26
Score:				

Throughout p denotes a prime number, \mathbf{Q}_p denotes the field of p-adic numbers, and \mathbf{Z}_p denotes the ring of p-adic integers.

Question 1 (14 points)

(a) (2 points) Write 5 as a p-adic number for p = 2, 3.

(b) (2 points) Write 5 as a p-adic number for p > 5.

(c) (2 points) Calculate 1/5 as a 3-adic number in standard form. Is it a 3-adic integer (i.e. an element of \mathbb{Z}_3)?

(d) (2 points) Let

 $\alpha=2+3\cdot p+5\cdot p^2+2\cdot p^3+3\cdot p^4+5\cdot p^5+\dots$

Which number does α represent in \mathbf{Q}_p for p>5?

(e) (2 points) Which number does α (of part (d)) represent in \mathbf{Q}_p for p=2,3.

(f) (2 points) For $\sqrt{7} = a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 + a_3 \cdot 3^3 + a_4 \cdot 3^4 + \dots$, find $a_0, \dots a_4$.

(g) (2 points) Show that there is no $\beta \in \mathbf{Q}_p$ so that $\beta^2 = p$. Deduce that $\mathbf{Q}_p(\sqrt{p})/\mathbf{Q}_p$ is a quadratic extension.

Question 2 (2 points)

Show that \mathbf{Q}_p would not even be an integral domain if p is not a prime number. (Hint: Take p = 6 and look for an element $\alpha \in \mathbf{Q}_6$ with $\alpha(\alpha + 1) = 0$, either using Hensel's lemma, or by an inductive construction.)

Question 3 (10 points)

Consider the quadratic extension $\mathbf{Q}(\sqrt{-1})/\mathbf{Q}$ with the corresponding ring extension $\mathbf{Z}[\sqrt{-1}]/\mathbf{Z}$. For an element $\alpha = a + b\sqrt{-1} \in \mathbf{Q}(\sqrt{-1})$, define $N(\alpha) = \alpha^2 + b^2$.

(a) (2 points) For any element $\alpha, \beta \in \mathbf{Q}(\sqrt{-1})$, show that $N(\alpha \beta) = N(\alpha) N(\beta)$.

(b) (2 points) Determine all the units of $\mathbb{Z}[\sqrt{-1}]$ using previous part.

(c) (2 points) Use previous part to find the prime factorization of 2 in $\mathbb{Z}[\sqrt{-1}]$. (Hint: $\mathbb{Z}[\sqrt{-1}]$ is a UFD.)

(d) (2 points) Use this information to find the ramification index of ν_2 (as a valuation on Q) in $\mathbf{Q}(\sqrt{-1})$.

 $(e) \ (2 \ {\rm points}) \ {\rm Let} \ \nu \colon {\bf Q}(\sqrt{-1}) \to {\bf Z} \cup \{\infty\} \ {\rm denote \ the \ extension \ of} \ \nu_2. \ {\rm Find} \ \nu(12).$