Université Galatasaray, Département de Mathématiques 2018 - Spring Semester – Math 532 - Selected Topics in Algebraic Geometry Mid Term Exam, 18 April 2018 – Ayberk Zeytin, 120 minutes Name & Surname: _______Sign: _____

Question:	1	2	3	Total
Points:	5	6	6	17
Score:				

Question 1 (5 points)

Decide whether the following statements are true or false. Give a very short (one or two sentence) explanation (reason if true, counter-example if false) for each:

- (a) (True / False) Any finite extension is algebraic.
- (b) (True / False) Any algebraic extension is finite.
- (c) (True / False) For any field k, the extension \overline{k}/k is infinite; where \overline{k} denotes the algebraic closure of k.
- (d) (True / False) **C** is an algebraic closure of **Q**.
- (e) (True / False) Given any algebraic extension K/\mathbf{Q} there is an injective ring homomorphism $K \to \mathbf{C}$.
- (f) (True / False) \mathbf{F}_{p^2} can be embedded into \mathbf{F}_{p^3} .
- (g) (True / False) An algebraic closure of \mathbf{F}_p can contain many different subfields of order p^n for some $n \in \mathbf{N}$.
- (h) (True / False) For every $n \in \mathbf{N}$ there is an irreducible polynomial $p(X) \in \mathbf{F}_p[X]$ of degree n.
- (i) (True / False) Let $K = \mathbf{F}_p(t)$ and let $\mathbf{F}_p(\alpha)$ be a stem field for $X^p t \in \mathbf{F}_p(t)[X]$. There are p-many $\mathbf{F}_p(t)$ homomorphisms $\mathbf{F}_p(\alpha) \to K$.

Question 2 (6 points)

Let $k = \mathbf{F}_p$ and let $f(X) \in k[X]$.

(a) (2 points) Show that if f'(X) = 0 then f(X) is reducible.

(b) (2 points) Deduce that if $f(X) \in k[X]$ is irreducible then f(X) is separable.

(c) (2 points) Prove that finite fields are perfect. That is, let K be a finite extension of k. Prove that if $f(X) \in K[X]$ is irreducible then f is separable. (Hint: Recall that perfect fields are those in which every element is a pth power.)

Question 3 (6 points)

Work out the explicit Galois correspondence for $\mathbf{Q}(\zeta_9)/\mathbf{Q}$.