MATH 504 EXERCISES 1

A. ZEYTİN

Unless otherwise stated G is a group.

- (1) Let G be a semi-group. Show that G is a group if and only if the following conditions hold :
 - ▶ there exists an element $e \in G$ such that ea = a for all $a \in G$ (i.e. left identity)
 - ▶ for each $a \in G$, there exists an element $a^{-1} \in G$ such that $a^{-1}a = e$ (i.e. left inverse).

Deduce that a semi-group G is a group if and only if for all $a, b \in G$ the equations ax = b and ya = b have solutions in G.

- (2) Let (G, +) be a group, S a non-empty set. By F(G, S) we denote the set of all functions $G \to S$. On F(G, S) define (f * f')(x) = f(x) + f'(x) (i.e. pointwise addition).
 - Prove that F(G, S) is a group.
 - ▶ Prove that F(G, S) is abelian if G is abelian.

(3) Show that all subgroups of abelian groups are normal.

- (4) Let G = (Z, +).
 - Show that if H is a subgroup of G then there is some integer n so that $H = nZ = \{kn | k \in Z\}$.
 - ▶ Determine all subgroups of **Z**/p**Z**; where p is a fixed prime number.
 - Determine all subgroups of $\mathbf{Z}/n\mathbf{Z}$.

(5) Let G, G' be two groups. On the set $G \times G'$, define $(g_1, g'_1) * (g_2, g'_2) := (g_1g_2, g'_1g'_2)$.

- Show that $(G \times G', *)$ is a group.
- Show that $(G \times G')$ is abelian if and only if both G and G' are abelian.
- ► Write out an addition table for the following groups :
 - $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ (this is called the Klein 4 group) - $\mathbf{Z}/2\mathbf{Z} \times \mathfrak{S}_3$.
- (6) Write out the multiplication table of a group of order 2 (or 3). Deduce that G is abelian.
- (7) Fix a prime number p. We let :

$$\begin{split} R_p &= \left\{ \frac{a}{b} \in \mathbf{Q} \,|\, \mathrm{gcd}(a,b) = 1, \text{ and } \mathrm{gcd}(b,p) = 1 \right\}, \\ R^p &= \left\{ \frac{a}{b} \in \mathbf{Q} \,|\, \mathrm{gcd}(a,b) = 1, \text{ and } b = p^k \text{ for some } k \in \mathbf{N} \cup \{0\} \right\} \end{split}$$

Show that both R_p and R^p are groups under addition.

- (8) Let G be a group. Show that the following conditions on G are equivalent :
 - ▶ G is abelian,
 - $(gg')^2 = g^2(g')^2$ for any $g, g' \in G$
 - $(gg')^{-1} = g^{-1}(g')^{-1}$ for any $g, g' \in G$
 - $(gg')^n = g^n(g')^n$ for any $g, g' \in G$ and for all $n \in \mathbb{Z}$
 - $(gg')^n = g^n(g')^n$ for 3 consequtive positive integers n = k, k + 1, k + 2.

Deduce that a group G is abelian if an only if the map

$$\begin{array}{l} \mathrm{inv} \colon G \to G \\ g \mapsto \mathrm{inv}(g) \mathrel{\mathop:}= g^{-1} \end{array}$$

is an automorphism.

- (9) Let φ : $G \to G'$ be a group homomorphism. Show that φ is an isomorphism if and only if there is a group homomorphism ψ : $G \to G'$ so that both $\varphi \circ \psi = id$ and $\psi \circ \varphi = id$.
- (10) For H and K two subgroups of G show that $H \cap K$ is also a subgroup of G.

• Let \mathcal{A} be a non-empty collection of subgroups of G. Show that

 $\bigcap_{H\in\mathcal{A}}H$

is a subgroup of G.

• Let A be any *subset* of G. The subgroup generated by A, denoted $\langle A \rangle$, is defined as :

$$\langle A \rangle := \bigcap_{H \le G, A \subseteq H} H$$

Deduce, using previous part of the exercise that $\langle A \rangle$ is a subgroup of G.

► Let B be any *subset* of G. Define

$$\widetilde{B} := \{a_1^{\alpha_1} a_2^{\alpha_2} \cdots a_k^{\alpha_k} | n \in \mathbf{N}, \ \alpha_i = \pm 1 \text{ with } a_i \text{ not necessarily distinct} \}.$$

Show that B is a subgroup of G.

- Show finally that for any subset A of a group G, we have $\langle A \rangle = A$.
- Show that if $A \subseteq B$ then $\langle A \rangle \subseteq \langle B \rangle$.
- Show that if $H \leq G$ then $\langle H \rangle = H$.
- ▶ When $A = \{g_1, \dots, g_n\}$ is a finite subset of G, we denote $\langle A \rangle$ by $\langle g_1, \dots, g_n \rangle$. In particular, when $A = \{g\}$. we denote $\langle A \rangle = \langle g \rangle$. In \mathfrak{S}_4 , determine $\langle \{(12), (234)\} \rangle$
- Compute $\langle (123) \rangle$ in \mathfrak{S}_4 .
- Compute $\langle (12), (13), (14) \rangle$ in \mathfrak{S}_4 .
- Compute $\langle (12), (13), (14) \rangle$ in \mathfrak{S}_5 .
- Show that $H \cup K$ is in general not a subgroup of G.

(11) Let H and K be two subgroups of a group G. Show that if G is abelian, then

$$\mathsf{H}\mathsf{K} := \{\mathsf{h}\mathsf{k} \,|\, \mathsf{h} \in \mathsf{H}, \, \mathsf{kin}\mathsf{K}\}$$

is a subgroup of G. Give an example to show that assuming G to be an abelian group is necessary.

- (12) For an arbitrary group G, a subgroup H of G is called *cyclic* if there is some $h \in H$ so that $H = \langle h \rangle$. In particular, we say that a group G is cyclic if $G = \langle g \rangle$ for some $g \in G$.
 - Show that **Z** is cyclic, however its generator $g \in G$ is not unique.
 - ▶ Show that if G is cyclic and H is a subgroup of G then H is cyclic, too.
 - ▶ Using previous exercise, determine all subgroups of **Z**.
 - ▶ Show that if a cyclic group has only one generator, then it is of order 2.
 - ►

(13) Let G be a group of $g_o \in G$ be a fixed element.

- Show that the set $C_G(g_o) := \{g \in G \mid g g_o = g_o g\}$ is a subgroup of G. This subgroup is called the *centralizer* of g_o in G.
- ► For $G = \mathfrak{S}_4$, compute $C_G(\sigma)$; where $\sigma_o = (12)$, (123), (1234).
- ▶ Show that if G is abelian, then for any $g_o \in G$, $C_G(g_o) = G$.
- ▶ More generally, let X be any non-empty subset of G and define

$$C_{G}(X) := \{g \in G \mid gx = xg \text{ for all } x \in X\}.$$

Show that $C_G(X)$ is a subgroup of G.

- Show that $C_G(X) = C_G(\langle X \rangle)$; where $\langle X \rangle$ denotes the subgroup of G generated by X, (see Exercise 10).
- ▶ Deduce that $C_G = Z_G = C_G(G) = \bigcap_{g \in G} C_G(g)$ is a subgroup of G called the center of G.
- (14) Let G be a group and X be a non-empty subset of G.
 - ► Show that the set

$$\mathsf{N}_{\mathsf{G}}(\mathsf{X}) = \{ \mathsf{g} \in \mathsf{G} \, | \, \mathsf{g}\mathsf{x}\mathsf{g}^{-1} \in \mathsf{X} \}$$

is a subgroup of G, called the normalizer of X in G.

- Show that for any $X C_G(X) \le N_G(X)$.
- Show that $N_G(X) = N_G(\langle X \rangle)$.
- Show that X is a normal subgroup of G if and only if $N_G(X) = G$.
- ▶ Deduce that Z(G) is always a normal subgroup of G.
- For $X = \{(12), (13), (23)\} \subset \mathfrak{S}_4$ compute $N_G(X)$.

- (15) Let G be a group and $g \in G$ be an arbitrary element. We define the *order* of g, denoted by ordg, to be the size of the subgroup generated by g, that is ordg = $|\langle g \rangle|$ (infinity is allowed!).
 - Find the order of $(12435687) \in \mathfrak{S}_8$.
 - ▶ Find the order of $(1243)(5687) \in \mathfrak{S}_8$.
 - ▶ Find the order of $(124)(35687) \in \mathfrak{S}_8$.
 - In \mathfrak{S}_5 determine all elements of order 4.
 - ▶ For an element $x \in G$ show that x and x^{-1} have the same orders.
 - Prove that for any $x, g \in G$ we have $\operatorname{ord} xgx^{-1} = \operatorname{ord} g$.
 - Show, using the previous part, that for any $x, y \in G$ we have ordxy = ordyx.
- (16) Show that if $\varphi: G \to G'$ is a group homomorphism with $G = \langle g_o \rangle$, then show that φ is determined only by $\varphi(g_o)$.
- (17) Let G be a group, g and g' be fixed elements of G. Define

$$\begin{split} \phi_{g,g'} \colon \mathbf{Z} \times \mathbf{Z} &\to G \\ (k,l) \mapsto g^k(g'^l) \end{split}$$

Determine condition(s) on the elements g and g' so that the map $\varphi_{q,q'}$ is a group homomorphism.

- (18) Prove that the following groups are not isomorphic :
 - \blacktriangleright **R** and **Q**
 - $\blacktriangleright \ \mathbf{Q} \text{ and } \mathbf{Z}$
- (19) Let G be a group and H be a subgroup of G. Show that the following conditions on H are equivalent :
 - i. $ghg^{-1} \in H$ for all $g \in G$, for all $h \in H$
 - ii. $gHg^{-1} = H$ for all $g \in G$
 - iii. gH = Hg for all $g \in G$.
- (20) Let G be a group and let Aut(G) denote the set of all automorphisms of G.
 - ► Show that Aut(G) is a group under composition.
 - ▶ For a fixed $g_o \in G$ show that the map :

$$\phi_{g_o}\colon G\to G$$

$$x\mapsto g_o x g_o^{-1}$$

is an element of Aut(G). Such an automorphism is called an inner automorphism of G.

► Show that the map :

$$\begin{split} \iota\colon G \to \operatorname{Aut}(G) \\ g_o \mapsto \phi_{g_o} \end{split}$$

is a monomorphism.

- ► Show that the image of ι is a normal subgroup of Aut(G). This subgroup denote by Inn(G) and the quotient Aut(G)/Inn(G) is called the group of outer automorphisms of G and denoted by Out(G).
- (21) Let G, G' be two groups and $\varphi: G \to G'$ be a group homomorphism. Show that if H and H' are normal subgroup of G and G' respectively, then φ induces a group homomorphism $\widehat{\varphi}: G/H \to G'/H'$ when $\varphi(H) \subseteq H'$.
- (22) Let G be a group, H and K are subgroups of G so that $H \leq N_G(K)$.
 - Show that $HK := \{hk | h \in H, k \in K\}$ is a subgroup of G.
 - ► Show that K is a normal subgroup of HK.
 - Show that $H \cap K$ is a normal subgroup of H.
 - ▶ Show that $HK/K \cong H/H \cap K$. <u>Hint</u>: Use 1st isomorphism theorem.
 - ► This is called diamond isomorphism theorem. Explain why?
- (23) Let G be a group and H be a subgroup of G.
 - Show that for any $g \in G$ the set gHg^{-1} is a subgroup of G.
 - ► Show that if G has only one subgroup of order |H|; then H is a normal subgroup.