MATH 504 EXERCISES 2

A. ZEYTİN

Unless otherwise stated G is a group.

(1) Consider the following map:

$$\mathbf{R} \times \mathbf{R}^2 \to \mathbf{R}^2$$
$$(\mathbf{r}, (\mathbf{x}, \mathbf{y})) \mapsto \mathbf{r} \cdot (\mathbf{x}, \mathbf{y}) := (\mathbf{x} + \mathbf{r}, \mathbf{y} - \mathbf{r})$$

- ▶ Show that this defines an action of $(\mathbf{R}, +)$ on \mathbf{R}^2 .
- ► Sketch the orbits of the points $(0,0), (1,0), (0,1) \in \mathbb{R}^2$.
- ▶ Determine the stabilizers of the points (0,0), (1,0), $(0,1) \in \mathbb{R}^2$.
- (2) Consider the following map:

$$\begin{split} \mathbf{R} \times \mathbf{R}^2 &\to \mathbf{R}^2 \\ (r, (x, y)) &\mapsto r \cdot (x, y) := \begin{pmatrix} \cos(r) & -\sin(r) \\ \sin(r) & \cos(r) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{split}$$

- ▶ Show that this defines an action of $(\mathbf{R}, +)$ on \mathbf{R}^2 .
- ▶ Sketch the orbits of the points $(0,0), (1,0), (0,1) \in \mathbb{R}^2$.
- ▶ Determine the stabilizers of the points $(0,0), (1,0), (0,1) \in \mathbb{R}^2$.
- ▶ Determine all $a, b \in \mathbf{R}$ so that the following twisted version of the above map still defines an action of \mathbf{R} on \mathbf{R}^2

$$\begin{split} \mathbf{R} \times \mathbf{R}^2 &\to \mathbf{R}^2 \\ (r, (x, y)) &\mapsto r \cdot (x, y) := \begin{pmatrix} a \cos(r) & -b \sin(r) \\ b \sin(r) & a \cos(r) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{split}$$

(3) Consider the following map:

$$\mathbf{R} \setminus \{0\} \times \mathbf{R}^2 \to \mathbf{R}^2$$
$$(r, (x, y)) \mapsto r \cdot (x, y) := (rx, ry)$$

- ▶ Show that this defines an action of $(\mathbf{R} \setminus \{0\}, \times)$ on \mathbf{R}^2 .
- ▶ Sketch the orbits of the points $(0,0), (1,0), (0,1) \in \mathbb{R}^2$.
- ▶ Determine the stabilizers of the points $(0,0), (1,0), (0,1) \in \mathbf{R}^2$.
- (4) Consider the following map:

$$\begin{split} \mathbf{R} \setminus \{0\} \times \mathbf{R}^2 &\to \mathbf{R}^2 \\ (r,(x,y)) &\mapsto r \cdot (x,y) := (rx,r^{-1}y) \end{split}$$

- ▶ Show that this defines an action of $(\mathbf{R} \setminus \{0\}, \times)$ on \mathbf{R}^2 .
- ▶ Sketch the orbits of the points $(0,0), (1,0), (0,1) \in \mathbb{R}^2$.
- ▶ Determine the stabilizers of the points $(0,0), (1,0), (0,1) \in \mathbb{R}^2$.
- (5) Let G be a finite p group acting on a X, where $|X| = k < \infty$ with $p \nmid k$. Prove that the group G has a fixed point, i.e. there is some $x \in X$ so that $g \cdot x = x$ for all $g \in G$. Deduce that the center of such a group G cannot be trivial.
- (6) Let G be a group acting on a set X. For some $g \in G$ we define :

$$Fix(g) = \{x \in X \mid g \cdot x = x\}.$$

▶ Consider the action of \mathfrak{S}_n on $\{1, 2, ..., n\}$. For an element $\sigma \in \mathfrak{S}_n$ compute $Fix(\sigma)$

▶ Let H be any subgroup of G and consider the action of H on G by multiplication from left :

$$H \times G \rightarrow G$$

 $(h, x) \mapsto h \cdot x := hx$

For $e \in H$, find Fix(e).

▶ Suppose that the action of G on X is *transitive*, i.e. for any $x, y \in X$, there is an element $g \in G$ so that $g \cdot x = y$. Show that :

$$\frac{1}{|G|} \sum_{g \in G} \operatorname{Fix}(g) = 1.$$

Remark that the sum on the left hand side represents an average over the group G!

- (7) Let $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group¹ of order 8.
 - ▶ Show that Q_8 is isomorphic to a subgroup of \mathfrak{S}_8 .
 - ▶ Show that Q_8 cannot be isomorphic to any subgroup of \mathfrak{S}_n for $n \le 7$. Hint: Note first that such an action would induce an action of Q_8 on a set, say X, with $n \le 7$ elements. Show that if this is the case, then for and $x \in X$, $\operatorname{Stab}(x)$ must contain the subgroup $\{\pm 1\}$.
- (8) Write out the class equation for:
 - $ightharpoonup G = \mathfrak{S}_5$
 - ightharpoonup $G = Q_8$
- (9) Let $g_1, ..., g_r$ are representatives of distinct conjugacy classes of a group G. Show that if these elements commute, i.e. $g_i g_j = g_j g_i$ for any $i, j \in \{1, 2, ..., r\}$, then G is an abelian group.
- (10) Let G be a group and H be a normal abelian subgroup of G.
 - ▶ Show that G/H acts on H by conjugation.
 - ▶ Deduce that one obtains a homomorphism from G/H to Aut(H).
- (11) Consider the action of $G = \mathbf{Z}/4\mathbf{Z}$ onto itself from left :

$$G \times G \rightarrow G$$

 $(q, x) \mapsto q \cdot x = q + x$

Describe explicitly the permutation representation obtained from this action.

(12) Let $X = \{(i, j) | i, j \in \{1, 2, 3, 4\}\}$. Consider:

$$\mathfrak{S}_4 \times X \to X$$
$$(\sigma, (i, j)) \mapsto \sigma \cdot (i, j) := (\sigma(i), \sigma(j))$$

- ▶ Show that the above map defines a group action.
- \blacktriangleright Determine the orbit of (1,1) and (1,2).
- ▶ Compute the images of the elements $\sigma_1 = (12)$, $\sigma_2 = (123)$, $\sigma_3 = (1234)$ and $\sigma_4 = (12)(34)$ under the permutation representation associated to this action i.e. π : $\mathfrak{S}_4 \to \mathfrak{S}_{16}$

¹This is a group under multiplication: ii = jj = kk = -1, ij = k, jk = i, ki = j and ji = -k, kj = -i, ik = -j.