Université Galatasaray, Département de Mathématiques 2018 - Fall Semester – Math 504 - Advanced Algebra Mid Term Exam, 12 December 2018 – Ayberk Zeytin, 120 minutes Name & Surname: ________Sign: ______

Question:	1	2	Total
Points:	16	8	24
Score:			

Question 1 (16 points)

Let R be a commutative ring with identity. An element $r \in R$ is called **nilpotent** if $r^n = 0$ for some positive integer n.

(a) (2 points) Determine all nilpotent elements in $\mathbb{Z}/12\mathbb{Z}$.

(b) (2 points) Show that if $r \in R$ is a nilpotent element then 1 + r is a unit.

(c) (2 points) Deduce that the sum of a nilpotent element and a unit is a unit in R.

(d) (2 points) Deduce that an element $f(X) = a_0 + a_1 X + \ldots + a_n X^n \in R[X]$ is a unit if a_0 is a unit and a_1, \ldots, a_n are nilpotent elements of R.

(e) (2 points) Give an example of a nilpotent and a unit element in $(\mathbb{Z}/8\mathbb{Z})[X]$ of degree ≥ 1 .

(f) (2 points) Show that the set $\mathfrak{n}(R)$ of all nilpotent elements in R is an ideal.

(g) (2 points) Show that R/n(R) does not have any nilpotent elements.

(h) (2 points) Show that the intersection of all prime ideals of R, that is $\bigcap_{\wp \leq R, \wp \text{ prime}} \wp,$ contains n(R). (Hint: Show that every prime ideal contains n(R).)

Question 2 (8 points)

Let $R = \mathbb{Z}[\sqrt{5}]$. For $\alpha = a + b\sqrt{5} \in R$ define the norm function $N(\alpha) = a^2 - 5b^2$.

(a) (2 points) Assuming that N is a multiplicative function, i.e. $N(\alpha \cdot \beta) = N(\alpha)N(\beta)$, classify the units of R.

(b) (2 points) Deduce that the elements 2, $3 + \sqrt{5}$ and $3 - \sqrt{5}$ (of R) are irreducible in R. (Hint: What are squares (mod 5)?)

(c) (2 points) Deduce that R is not a UFD.

(d) (2 points) Determine the ring $S = \mathbb{Z}[\sqrt{5}]/\langle 2 \rangle$, i.e find a ring which is isomorphic to S. (Hint: What do you expect from S to be? Determine all the equivalence classes and guess.)