Sign	S	i	\mathbf{g}	n	
------	---	---	--------------	---	--

Question:	1	2	3	Total
Points:	2	10	6	18
Score:				

Question 1 (2 points)

Use the fact that the class number of the number field $\mathbf{Q}(\sqrt{5})$ is 1 to show that the solutions of the equation

 $t^2 - 5u^2 = 4$

are given by $y=\pm F_{2n}$ and $t=\pm(F_{2n-1}+F_{2n+1});$ where F_n is the $n^{\rm th}$ Fibonacci number : $F_0=0,\,F_1=1$ and $F_{n+1}=F_n+F_{n-1}.$

Question 2 (10 points) Let $\mathfrak{p} = (4, \frac{3+\sqrt{-71}}{2})$ and $\mathfrak{q} = (3, \frac{1+\sqrt{-71}}{2})$. (a) (2 points) Show that $\mathfrak{p}\mathfrak{q} = (12, \frac{-5+\sqrt{-71}}{2})$.

(b) (2 points) Interpret the result in terms of corresponding binary quadratic forms. Show that the reduced form corresponding to \mathfrak{pq} is (2, 1, 9).

(c) (2 points) Show that the form (2,1,9) represents 120. (Hint: This is a positive definite form: there are only finitely many cases to consider. Write your trials, as well.)

(d) (2 points) Assuming that the ring of integers of a number field is a Dedekind domain, hence ideal factorisation is unique, show $\mathbf{Q}(\sqrt{6})$ is not a UFD. (Hint: For the ideals $\mathfrak{p} = (2, 4 + \sqrt{6})$ and $\mathfrak{q} = (5, 4 + \sqrt{6})$, compute \mathfrak{p}^2 , $q\bar{q}$, \mathfrak{pq} and \mathfrak{pq} .)

(e) (2 points) Interpret the result in terms of corresponding binary quadratic forms.

Question 3 (6 points)

(a) (2 points) Show that for any integers x_1, x_2, y_1, y_2 and D, we have :

$$(x_1^2 + Dy_1^2)(x_2^2 + Dy_2^2) = (x_1x_2 - Dy_1y_2)^2 + D(x_1y_2 + x_2y_1)^2$$

(b) (2 points) Interpret this identity in terms of composition defined on the group of binary quadratic forms of appropriate discriminant.

(c) (2 points) This identity is very old: in fact due to Bharmagupta (600s). Explain what Gauss' composition means by building on this identity. (Hint: Refer to Question 2 : the form f = (4,3,5) represents 12, the form g = (3,1,6) represents 10, hence fg = (12,-5,2) should represent 120.)