MATH 519 EXERCISES 2

A. ZEYTİN

The following numbered are exercises from our textbook : An Invitation to Arithmetic Geometry, *D. Lorenzini*, AMS GSM series vol.9 1997

- (1) Use Zorn's lemma to show that every ideal of a commutative ring R with unity is contained in a maximal ideal.
- (2) Let R be a local ring with \mathfrak{m} its unique maximal ideal.
 - Show that every element of $R \setminus m$ is a unit.
 - Show that for any $x \in R$ either x is invertible or 1 x is invertible, or both.
- (3) Let R be an integral domain in which all prime ideals are principal. Show that the ring is a principal ideal domain.
- (4) Can you find a non-constant unit in C_f where $f = x^2 + y^2 1$.
- (5) Let $f \in k[x, y]$; where k is an algebraically closed field. Decide whether the element x a can ever be an invertible element of $C_f := k[x, y]/(f)$.
- (6) Chapter II. 1, 9, 10, 12, 17Among these 4, 5, II. 9, 10, are your homework to be submitted due 29/11/2019.