Université Galatasaray, Département de Mathématiques 2020 - Fall Semester – Math 519 - Complex Geometry Final Exam, 06 January 2020 – Ayberk Zeytin, 120 minutes Name & Surname: _ Sign:

Question:	1	2	Total
Points:	12	14	26
Score:			

Question 1 (12 points)

We fix an odd prime number p and let $\zeta_p = e^{2\pi\sqrt{-1}/p}$. The aim of this question is to factorize the ideal (p) in the cyclotomic extension $\mathbf{Q}(\zeta_p)/\mathbf{Q}$. We admit (without proof) the fact that the integral closure of Z in $Q(\zeta_p)$ is $Z[\zeta_p]$. You may also need the fact that the extension $\mathbf{Q}(\zeta_p)/\mathbf{Q}$ is a Galois extension. The Galois group's i^{th} element is the homomorphism determined by sending ζ_p to ζ_p^i for $i = 1, 2, \dots, p-1$.

(a) (2 points) Prove Eisenstein's irreducibility criterion : let $f(X) = X^n + a_{n-1}X^{n-1} + \ldots +$ $a_1X + a_0 \in \mathbf{Z}[X]$ be a monic polynomial so that $p \mid a_i$ for each $i = 0, 1, \dots, n-1$ but $p^2 \nmid a_0$. Show that f(X) is irreducible. (Hint: Prove by contradiction. You'll need Gauß Lemma.)

(b) (2 points) Show that for each i = 1, 2, ..., p - 1 we have $p \mid {p \choose i} = \frac{p!}{i!(p-i)!}$. (Hint: Use induction.)

(c) (2 points) Show that the polynomial $f(X) = 1 + X + \ldots + X^{p-1}$ is the minimal polynomial of ζ_p and deduce that the degree of the extension $\mathbf{Q}(\zeta_p)/\mathbf{Q}$. (Hint: Show that f(X + 1) is irreducible using (a) and (b).)

(d) (2 points) Show that for and $g = 1, 2, \dots, p-1$ the element $\varepsilon_g := \frac{1-\zeta_p^g}{1-\zeta_p}$ is a unit of $\mathbf{Z}[\zeta_p]$. (Hint: Show that both ε_g and ε_g^{-1} are integral over \mathbf{Z} .)

(e) (2 points) Show that p and $(1-\zeta_p)^{p-1}$ are associates, i.e. one is a unit times the other. (Hint: Evaluate the minimal polynomial of ζ_p at X = 1 to get $p = \prod_{i=1}^{p-1} (1-\zeta_p^i)$. Try to express the latter product in terms of ε_g) (f) (2 points) Show that $\mathbf{Z}[\zeta_p]/(1-\zeta_p) \cong \mathbf{Z}/p\mathbf{Z}$. (Hint: Do not try to find an explicit homomorphism. Instead use the fundamental formula relating the extension degree to ramification index and residual degree.)

Question 2 (14 points)

We consider the polynomial $f(X, Y) = Y^2 - X^3 - X^2 \in \mathbb{C}[X, Y]$, set $C_f = \mathbb{C}[X, Y]/(f)$, $\mathbb{C}(f) := ff(C_f)$ and Z_f be the zero set of f in \mathbb{C}^2 .

(a) (2 points) Show that f is irreducible. (Hint: You may try to solve this directly or prove a generalized Eisenstein criterion.)

(b) (2 points) Show that the ring C_f is not integrally closed.(Hint: Consider the element $\frac{Y}{X}$.)

(c) (2 points) Show that the integral closure of C_f in ${\bf C}(f)$ is ${\bf C}[X][Y/X].$

(d) (2 points) Does there exist an $\mathfrak{a} \in \mathbf{C}$ so that $(X-\mathfrak{a})$ is a unit?

(e) (2 points) Does there exist an $a \in \mathbf{C}$ so that (X - a) is a unit, if we replace \mathbf{C} by \mathbf{R} ?

(f) (2 points) Show the following inclusions :

$$\mathbf{C}[\mathbf{X}] \subset \mathbf{C}_{\mathrm{f}} \subset \mathbf{C}[\mathbf{X}, \mathbf{Z}] / (\mathbf{Z}^2 - (\mathbf{X} + 1))$$

(g) (2 points) Determine the maps determined by the above inclusions and describe the geometrically your maps (i.e. real picture).