MATH 513 EXERCISES 2

A. ZEYTİN

- (1) Define $f(s) = \Gamma(\frac{s}{2})\Gamma(\frac{s+1}{2})$. Show that $f(s+1) = \frac{s}{2}f(s)$.
 - Deduce that $2^{s+1}f(s+1) = s2^2$ and observe that $2^s f(s)$ satisfies the property that we expect $\Gamma(s)$ to satisfy, too!
 - Show that $2^s f(s) = C\Gamma(s)$; where $C = \lim_{N \to \infty} 2^N \sqrt{N} \frac{(N-1)!^2}{(2N-1)!}$. (irrelevant exercise : $C = 2\sqrt{\pi}$).

(2) In this exercise, we'll find the integral representation of $\Gamma(s)$, that is, we'll prove $\Gamma(s) = h(s) := \int_{-\infty}^{\infty} t^{s-1} e^{-t} dt$,

for all $\sigma > 0$.

- Show that the integral on the right hand side (i.e. h(s)) converges for $\sigma > 0$.
- Show that h(s + 1) = sh(s) by using integration by parts.
- ► Show that h(1) = 1.
- Verify by integration by parts the equality :

$$\int_0^N \left(1-\frac{t}{N}\right)^N t^{s-1} \operatorname{d} t = N^s \sum_{r=0}^N \frac{(-1)^r \binom{N}{r}}{r+s}$$

▶ Show by comparing the poles of two complex functions of s that

$$N^{s}\sum_{r=0}^{N}\frac{(-1)^{r}\binom{N}{r}}{r+s}=\frac{N}{N+s}\Gamma_{N}(s);$$

- where $\Gamma_N(s) = \frac{N^s(N-1)!}{s(s+1)\dots(s+N-1)}$. Deduce that $h(s) = \Gamma(s)$ by calculating limit and $N \to \infty$.
- (3) Determine all the characters of the groups Z/8Z, Z/12Z, Z/15Z. Write the explicit isomorphisms between groups and the groups of characters.
- (4) Determine the group $\mathbf{Z}/p^2\mathbf{Z}$; where p is a prime number and determine all its characters.
- (5) Let ϕ denote the Euler's totient function.
 - Show that ϕ is multiplicative, that is $\phi(nm) = \phi(n)\phi(m)$ when (m, n) = 1.
 - ▶ Recall that a function f is called completely multiplicative if f(nm) = f(n)f(m) for any n, $m \in \mathbb{Z}$. Give an example to show that ϕ is not completely multiplicative.
 - Let p be a prime number. Show that $\phi(p^k) = p^k \left(1 \frac{1}{p}\right)$.

• Deduce that
$$\phi(N) = N \prod_{p \mid N} \left(1 - \frac{1}{p} \right)$$

- (6) Show that the Legendre symbol is indeed a Dirichlet character.
- (7) Let χ be a Dirichlet character and let $a, b \in \mathbb{Z}$ be arbitrary. Show that if $na \equiv b \pmod{N}$, then $\chi(n) = \chi(b)\overline{\chi}(a)$; where $\overline{\chi}$ denotes the conjugate character.
- (8) Let $\overline{n} \in (\mathbb{Z}/N\mathbb{Z})^{\times} \setminus \{\overline{1}\}$ be an arbitrary element. Show that there is always a Dirichlet character, say χ , modulo N so that $\chi(\overline{n}) \neq 1$.

(9) Let χ be a real valued Dirichlet character modulo q. Define

$$f(n) = \sum_{d|n} \chi(d).$$

- ▶ Show that f(1) = 1 and $f(n) \ge 0$ for all $n \in \mathbb{N}$
- Show that $f(n) \ge 1$ when n is a perfect square.
- (10) By using induction on the integer r show that :

 - (Z/p^rZ)[×] is cyclic for any prime number p > 2
 if n ≡ 1 (mod 8) then n ≡ x² (mod 2^r) for r ≥ 3. Show using the previous results that if
 - $(\mathbf{Z}/p^{r}\mathbf{Z})^{\times} \cong \mathbf{Z}/(p^{r-1}(p-1))\mathbf{Z}$ if p is an odd prime.
 - $\blacktriangleright (\mathbf{Z}/p^{\mathrm{r}}\mathbf{Z})^{\times} \cong \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2^{\mathrm{r}-2}\mathbf{Z}.$