MATH 513 EXERCISES 4

A. ZEYTİN

(1) Let $Q: \mathbf{R}^r \to \mathbf{R}$ be any quadratic form. Show that the function

$$B(x,y) = \frac{1}{2} (Q(x+y) - Q(x) - Q(y))$$

is a bilinear form.

- (2) Calculate the bilinear form B(x, y) associated to the following quadratic forms :

 - $Q(x,y) = x^2 + 3xy + 3y^2$ $Q(x,y,z) = x^2 + y^2 + yz + z^2$
- (3) Consider the (more general) theta series :

$$\theta(z,\tau) := \sum_{n \in \mathbf{Z}} e^{i\pi n^2 \tau + 2\pi i z n}$$

- Show that if one fixes *z*, then the series $\theta(z, \tau)$ converges for all $\tau \in \mathbb{H}$.
- Show that if one fixes τ , then the series $\theta(z, \tau)$ converges for all $z \in \mathbf{C}$.
- Deduce that the series is convergent for all $(z, \tau) \in \mathbf{C} \times \mathbb{H}$.
- Show that θ(z + 1, τ) = θ(z, τ), and therefore one may talk about its Fourier expansion in the variable z.
 Show that θ(z + τ, τ) = e^{-πiτ-2πiz}θ(z, τ). The factor e^{-πiτ-2πiz} is called a theta factor of this theta series.
- (4) Let $Q(x,y) = x^2 + y^2$. Verify the following equality :

$$\sum_{x,y\in\mathbf{Z}}e^{2\pi i(x^2+y^2)\tau}=\left(\sum_{n\in\mathbf{Z}}e^{2\pi in^2\tau}\right)^2$$

(5) Show that the Mellin transform of the theta series :

$$\sum_{\mathbf{n}\in\mathbf{Z}}e^{-\pi\mathbf{n}^{2}t},\quad(t\in\mathbf{R})$$

is the integral representation of the completed ζ function. <u>Hint</u>: Integrate termwise.

- (6) Explain why we assumed a Dirichlet character to be primitive when defining the corresponding Gauss sum, by investigating what happens when the Dirichlet character is not primitive.
- (7) Given a primitive Dirichlet character modulo q, we define

$$\tau(n,\chi) = \sum_{a \in \mathbf{Z}/q\mathbf{Z}} \chi(a) e^{2\pi i a n/q}$$

Show that if (n, q) = 1 then $\tau(n, \chi) = \overline{\chi}(n)\tau(\chi)$.

(8) Let χ_1, χ_2 be two primitive Dirichlet characters modulo q_1 and q_2 , respectively. Set $\chi = \chi_1 \chi_2$. Show that :

$$\mathfrak{r}(\chi) = \mathfrak{r}(\chi_1)\mathfrak{r}(\chi_2)\chi_1(\mathfrak{q}_2)\chi_2(\mathfrak{q}_1);$$

where τ denotes the corresponding Gauss sum.