MATH 513 EXERCISES 5

A. ZEYTİN

- (1) For an algebraic number $\alpha \in \mathbf{C}$ show that the set $I_{\alpha} = \{p(t) \in \mathbf{Q}[t] | p(\alpha) = 0\}$ is an ideal of $\mathbf{Q}[t]$.
- (2) Explain why $t^n 1$ is not the minimal polynomial of $\zeta_n = e^{2\pi\sqrt{-1}/n}$ when n is not a prime number.
- (3) Determine all a, b, c and d so that the complex number $\frac{a+b\sqrt{d}}{c}$ is an algebraic integer.
- (4) In this exercise, we will compute the discriminant of a quadratic number field.
 - Determine \mathbf{Z}_{K} when $K = \mathbf{Q}(\sqrt{d})$ for some square-free integer d.
 - Determine an integral basis of \mathbf{Z}_{K} .
 - Use the basis you obtained and calculate the discriminant of $\mathbf{Q}(\sqrt{d})$.
- (5) Find a square-free integer d so that \mathbf{Z}_{K} is not a UFD, and prove your claim.
- (6) Fix a number field K.
 - ▶ Show that the product of two fractional ideals is again a fractional ideal.
 - Show that if \mathfrak{A} is a fractional ideal of \mathbf{Z}_{K} , then

$$\mathfrak{A}' = (\mathbf{Z}_{\mathsf{K}} : \mathfrak{A}) := \{ \alpha \in \mathsf{K} \, | \, \alpha \mathfrak{A} \subseteq \mathbf{Z}_{\mathsf{K}} \}$$

is also fractional ideal of K.

- Determine the product $\mathfrak{A} \cdot \mathfrak{A}'$.
- (7) This exercise demonstrates the fact that being a Dedekind domain is of crucial importance for our considerations. Let $R = \mathbb{Z}[\sqrt{-3}]$.
 - ► Show that the ideal generated by 2 in R cannot be written as a product of prime ideals. Deduce that R is not a Dedekin domain.
 - Set $\mathfrak{A} = (2, 1 + \sqrt{-3}) \subseteq \mathbb{R}$. Show that \mathfrak{A} is not principal and determine \mathfrak{A}' . Deduce that \mathbb{R} is not a Dedekin domain.
- (8) Let a, b, c and d are integers with d being square-free. Let $K = \mathbf{Q}(\sqrt{d})$. Set $\mathfrak{A} = (a, b + c\sqrt{d})$.
 - Show that the class of $\mathfrak{A}' \in H(K)$ contains $(a, b c\sqrt{d})$.
 - ► Deduce that if \mathfrak{A} is any fractional ideal of K, then the class of $\mathfrak{A}' \in H(K)$ contains $\overline{\mathfrak{A}}$; where $\overline{\cdot}$ is the unique non-trivial element of the Galois group K/\mathbb{Q} .
- (9) Notice that if I is an ideal of \mathbf{Z}_{K} of norm 1, then $I = \mathbf{Z}_{K}$. Deduce that if \mathfrak{A} is an ideal of \mathbf{Z}_{K} whose norm is a prime number, then \mathfrak{A} is a prime ideal.