MATH 513 EXERCISES 6

A. ZEYTİN

 Prove the Euler product formula for the Hecke L-series of a number field K corresponding to the ideal class character χ; namely :

$$L_{\mathsf{K}}(\chi, \mathfrak{s}) := \sum_{\mathrm{I}} \frac{\chi(\mathrm{I})}{\mathsf{N}(\mathrm{I})} = \prod_{\mathfrak{p}: \text{prime ideal}} \frac{1}{1 - \chi(\mathfrak{p})\mathsf{N}(\mathfrak{p})^{-\mathfrak{s}}}$$

- (2) Show that if $\{\omega_1, \omega_2\}$ and $\{\eta_1, \eta_2\}$ are two bases of K/Q, then $\{\omega_1\eta_1, \omega_1\eta_2\}$ is again a basis of K/Q.
- (3) Let R be an integral domain, I be an ideal of R. Set K = ff(R). Prove of disprove the following statement : For any $\omega \in R$ there is an element α so that $\alpha \omega \in I$.
- (4) Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be lattices in a quadratic number field K. Show that :
 - $\blacktriangleright ((\mathfrak{a}:\mathfrak{b}):\mathfrak{c}) = (\mathfrak{a}:\mathfrak{b}\mathfrak{c})$
 - $\blacktriangleright (\mathfrak{a}:(\mathfrak{b}+\mathfrak{c}))=(\mathfrak{a}:\mathfrak{b})\cap(\mathfrak{a}:\mathfrak{c})$
- (5) Let K be a quadratic number field. For any two elements $\xi_1, \xi_2 \in K$, we define $\partial(\xi_1, \xi_2) := (\xi_1 \iota(\xi_1) \iota(\xi_1)\xi_2)^2$; where ι denotes the unique non-trivial automorphism of K.
 - ▶ Prove that $\partial(\xi_1\xi_2) = 0$ if and only if ξ_1 and ξ_2 are **Q**-linearly dependent.
 - ► Set $\mathfrak{a} = [\omega_1, \omega_2]$ be a lattice in K. Prove that if $\mathfrak{a} = [\eta_1, \eta_2]$ is another basis for the lattice \mathfrak{a} , the $\vartheta(\omega_1, \omega_2) = \vartheta(\eta_1, \eta_2)$. Deduce that one can define the discriminant of a lattice \mathfrak{a} in K as $\vartheta(\xi_1, \xi_2)$; where $\{\xi_1, \xi_2\}$ is any generating set of \mathfrak{a} .
 - If a is any lattice in K, then for any $\lambda \in K$, we have $\partial(\lambda a) = \lambda^2 \partial(a)$.
 - Let $\mathfrak{a}, \mathfrak{b}$ be two lattices in K. If $\mathfrak{a} \subseteq \mathfrak{b}$ then :

$$\partial(\mathfrak{a}) = \partial(\mathfrak{b})[\mathfrak{b}:\mathfrak{a}]^2$$

• Let Δ be a quadratic discriminant. Show that $\partial(\mathcal{O}_{\Delta}) = \partial([1, \omega_{\Delta}]) = \Delta$.