MATH 513

EXERCISES 7

A. ZEYTİN

(1) Let Δ be a quadratic discriminant, $\mathrm{d}, \mathrm{e} \in \mathbf{N}$ and set $\mathrm{f}=\mathrm{de}$. Prove that

- $\mathfrak{a}=\mathrm{d} \mathcal{O}_{\Delta} \cap \mathcal{O}_{\Delta \mathrm{f}^{2}}$ is an ideal of $\mathcal{O}_{\Delta \mathrm{f}^{2}}$
- $\mathcal{R}(\mathfrak{a})=\mathcal{O}_{\Delta e^{2}}$
(2) Let Δ be a quadratic discriminant and let \mathfrak{a} and \mathfrak{b} be two fractional \mathcal{O}_{Δ}-ideals. Show that the followings are fractional \mathcal{O}_{Δ}-ideals, too :
- $\lambda \mathfrak{a}$; where $\lambda \in K \backslash\{0\}$,
- $\mathfrak{a} \cap \mathfrak{b}$,
- $\mathfrak{a}+\mathfrak{b}$.
(3) Let Δ be a quadratic discriminant and let \mathfrak{a} and \mathfrak{b} be two invertible fractional \mathcal{O}_{Δ}-ideals. Show that:
- $\mathfrak{a b}$ is also an invertible fractional \mathcal{O}_{Δ}-ideal.
- $\left(\mathcal{O}_{\Delta}: \mathfrak{a b}\right)=\left(\mathcal{O}_{\Delta}: \mathfrak{a}\right)\left(\mathcal{O}_{\Delta}: \mathfrak{b}\right)$
(4) Calculate the product

$$
\left[6, \frac{1+\sqrt{97}}{2}\right]\left[18, \frac{5+\sqrt{9}}{2}\right]
$$

(5) Let Δ be a quadratic discriminant and say:

$$
\mathfrak{a}_{1}=\left[\mathfrak{a}_{1}, \frac{\mathfrak{b}_{1}+\sqrt{\Delta}}{2}\right] \quad \text { and } \quad \mathfrak{a}_{2}=\left[\mathfrak{a}_{2}, \frac{\mathfrak{b}_{2}+\sqrt{\Delta}}{2}\right]
$$

where $a_{1}, a_{2} \in \mathbf{N}, b_{1}, b_{2} \in \mathbf{Z}$ and $\operatorname{gcd}\left(a_{1}, a_{2}, \frac{b_{1}+b_{2}}{2}\right)=1$. Let b be any integer satisfying $b \equiv b_{1}\left(\bmod 2 a_{1}\right)$ and $b \equiv b_{2}\left(\bmod 2 a_{2}\right)$. Show that

$$
\mathfrak{a}_{1} \mathfrak{a}_{2}=\left[\mathfrak{a}_{1} a_{2}, \frac{b+\sqrt{\Delta}}{2}\right]
$$

Verify your answer for Exercise 4 using this formula.
(6) Let Δ be a quadratic discriminant and \mathfrak{a} a fractional \mathcal{O}_{Δ}-ideal. Prove that the followings statements are equivalent:

- \mathfrak{a} is invertible
- for every fractional \mathcal{O}_{Δ}-ideal \mathfrak{b}, there exists a (necessarily unique) fractional \mathcal{O}_{Δ}-ideal \mathfrak{c} so that $\mathfrak{b}=\mathfrak{a c}$
- for every fractional \mathcal{O}_{Δ}-ideal $\mathfrak{b}\left(\mathcal{O}_{\Delta}: \mathfrak{a}\right) \mathfrak{b}=(\mathfrak{b}: \mathfrak{a})$
- for any given fractional \mathcal{O}_{Δ}-ideals \mathfrak{b} and \mathfrak{c}, if $\mathfrak{a b} \subseteq \mathfrak{a c}$ then $\mathfrak{b} \subseteq \mathfrak{c}$.
(7) Let Δ be a quadratic discriminant and let \mathfrak{a} be a fractional \mathcal{O}_{Δ}-ideal. Prove the followings "almost unicity" theorem concerning the generators : If there are $a, \widetilde{a}, e, \widetilde{e} \in \mathbf{N}$ and $b, \widetilde{b} \in \mathbf{Z}$ so that

$$
\mathfrak{a}=e\left[a, \frac{\mathfrak{b}+\sqrt{\Delta}}{2}\right]=\widetilde{e}\left[\widetilde{\mathrm{a}}, \frac{\widetilde{\mathrm{~b}}+\sqrt{\Delta}}{2}\right]
$$

then we necessarily have $a=\widetilde{a}, e=\widetilde{e}$ and $b \equiv \widetilde{b}(\bmod 2 a)$
(8) Let \mathfrak{a} and \mathfrak{b} be two lattices in K and R be an order in K so that $R=\mathcal{R}(\mathfrak{a}) \cap \mathcal{R}(\mathfrak{b})$. A map $\varphi: \mathfrak{a} \rightarrow \mathfrak{b}$ is called an R-isomorphism if φ is a group isomorphism satisfying $\varphi(\lambda \alpha)=\lambda \varphi(\alpha)$ for all $\alpha \in \mathfrak{a}$ and $\lambda \in R$. Show that the lattice define the same class in the class group \mathcal{C}_{Δ} if and only if there exists an R-isomorphism $\varphi: \mathfrak{a} \rightarrow \mathfrak{b}$.

