MATH 513 EXERCISES 7

A. ZEYTİN

- (1) Let Δ be a quadratic discriminant, d, $e \in \mathbf{N}$ and set f = de. Prove that
 - $\blacktriangleright \ \mathfrak{a} = d\mathcal{O}_{\Delta} \cap \mathcal{O}_{\Delta f^2} \text{ is an ideal of } \mathcal{O}_{\Delta f^2}$

$$\blacktriangleright \ \mathcal{R}(\mathfrak{a}) = \mathcal{O}_{\Delta e^2}$$

- (2) Let Δ be a quadratic discriminant and let \mathfrak{a} and \mathfrak{b} be two fractional \mathcal{O}_{Δ} -ideals. Show that the followings are fractional \mathcal{O}_{Δ} -ideals, too :
 - $\lambda \mathfrak{a}$; where $\lambda \in K \setminus \{0\}$,
 - ▶ $a \cap b$,
 - ▶ $\mathfrak{a} + \mathfrak{b}$.
- (3) Let Δ be a quadratic discriminant and let \mathfrak{a} and \mathfrak{b} be two invertible fractional \mathcal{O}_{Δ} -ideals. Show that :
 - $\mathfrak{a}\mathfrak{b}$ is also an invertible fractional \mathcal{O}_{Δ} -ideal.
 - $\blacktriangleright \ (\mathcal{O}_{\Delta}:\mathfrak{ab}) = (\mathcal{O}_{\Delta}:\mathfrak{a})(\mathcal{O}_{\Delta}:\mathfrak{b})$
- (4) Calculate the product

$$\left[6,\frac{1+\sqrt{97}}{2}\right]\left[18,\frac{5+\sqrt{9}}{2}\right]$$

(5) Let Δ be a quadratic discriminant and say :

$$\mathfrak{a}_1 = \left[\mathfrak{a}_1, \frac{\mathfrak{b}_1 + \sqrt{\Delta}}{2} \right] \quad \text{and} \quad \mathfrak{a}_2 = \left[\mathfrak{a}_2, \frac{\mathfrak{b}_2 + \sqrt{\Delta}}{2} \right];$$

where $a_1, a_2 \in \mathbf{N}$, $b_1, b_2 \in \mathbf{Z}$ and $gcd(a_1, a_2, \frac{b_1+b_2}{2}) = 1$. Let b be any integer satisfying $b \equiv b_1 \pmod{2a_1}$ and $b \equiv b_2 \pmod{2a_2}$. Show that

$$\mathfrak{a}_1\mathfrak{a}_2 = \left[\mathfrak{a}_1\mathfrak{a}_2, \frac{\mathfrak{b}+\sqrt{\Delta}}{2}\right]$$

Verify your answer for Exercise 4 using this formula.

- (6) Let Δ be a quadratic discriminant and \mathfrak{a} a fractional \mathcal{O}_{Δ} -ideal. Prove that the followings statements are equivalent :
 - ▶ a is invertible
 - ▶ for every fractional \mathcal{O}_{Δ} -ideal \mathfrak{b} , there exists a (necessarily unique) fractional \mathcal{O}_{Δ} -ideal \mathfrak{c} so that $\mathfrak{b} = \mathfrak{a}\mathfrak{c}$
 - ▶ for every fractional \mathcal{O}_{Δ} -ideal \mathfrak{b} ($\mathcal{O}_{\Delta} : \mathfrak{a}$) $\mathfrak{b} = (\mathfrak{b} : \mathfrak{a})$
 - ▶ for any given fractional \mathcal{O}_{Δ} -ideals \mathfrak{b} and \mathfrak{c} , if $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{a}\mathfrak{c}$ then $\mathfrak{b} \subseteq \mathfrak{c}$.
- (7) Let Δ be a quadratic discriminant and let \mathfrak{a} be a fractional \mathcal{O}_{Δ} -ideal. Prove the followings "almost unicity" theorem concerning the generators : If there are $\mathfrak{a}, \tilde{\mathfrak{a}}, e, \tilde{e} \in \mathbf{N}$ and $\mathfrak{b}, \tilde{\mathfrak{b}} \in \mathbf{Z}$ so that

$$\mathfrak{a} = e\left[\mathfrak{a}, \frac{\mathfrak{b} + \sqrt{\Delta}}{2}\right] = \widetilde{e}\left[\widetilde{\mathfrak{a}}, \frac{\widetilde{\mathfrak{b}} + \sqrt{\Delta}}{2}\right]$$

then we necessarily have $a = \tilde{a}$, $e = \tilde{e}$ and $b \equiv \tilde{b} \pmod{2a}$

(8) Let \mathfrak{a} and \mathfrak{b} be two lattices in K and R be an order in K so that $R = \mathcal{R}(\mathfrak{a}) \cap \mathcal{R}(\mathfrak{b})$. A map $\varphi \colon \mathfrak{a} \to \mathfrak{b}$ is called an R-isomorphism if φ is a group isomorphism satisfying $\varphi(\lambda \alpha) = \lambda \varphi(\alpha)$ for all $\alpha \in \mathfrak{a}$ and $\lambda \in \mathbb{R}$. Show that the lattice define the same class in the class group \mathcal{C}_{Δ} if and only if there exists an R-isomorphism $\varphi \colon \mathfrak{a} \to \mathfrak{b}$.