Université Galatasaray, Département de Mathématiques			
Math 201 - Analyse à Plusieurs Variables I			
Quiz 10, 08/01/2021			
Name & Surname:	ID:	\sum	

1.

i. Rappeler soigneusement l'énoncé de l'inégalité des accroissements finis.

ii. Soit $f: \mathbb{R}^2 \to \text{une}$ fonction continue sur \mathbb{R}^2 telle que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ existent et bornée par $M \in \mathbb{R}_{>0}$ en tout point de \mathbb{R}^2 . Soit $(x_0, y_0) \in \mathbb{R}^2$. Montrer qu'il existe $C \in \mathbb{R}_{>0}$ tel que

$$|f(x,y) - f(x_0,y_0)| \le C\sqrt{(x-x_0)^2 + (y-y_0)^2}$$
 pour tout $(x,y) \in \mathbb{R}^2$

Université Galatasaray, Département de Mathématiques			
Math 201 - Analyse à Plusieurs Variables I			
Quiz 10, 08/01/2021			
Name & Surname:	ID:	\sum	

- **2.** Soit $f(x, y) = \sqrt{|xy|}$.
 - i. Calculer $f(0,0), f_x(0,0)$ et $f_y(0,0)$.

ii. Décider si f est dérivable en (0,0). Justifier votre réponse.