MATH 504 EXERCISES 1

A. ZEYTİN

Unless otherwise stated G is a group.

- (1) Study the properties (that is associativity, commutativity, existence of identity and inverses) of the following binary operations:
 - \triangleright $n * m = n + m + nm \text{ on } \mathbf{Z}$
 - $\triangleright x * y = \sqrt{xy} \text{ on } \mathbf{R}_+$
 - $ightharpoonup z * w = |zw| \text{ on } \mathbf{C}$
- (2) Prove or disprove the following statements:
 - ▶ Every binary operation on a set containing only one element is associative.
 - ▶ Every binary operation on a set containing only one element is commutative.
- (3) Let $G = C^0(\mathbf{R})$. On G we define the usual pointwise addition, pointwise multiplication and composition on G as follows:

$$+: G \times G \to G$$

$$(f,g) \mapsto f + g(x) := f(x) + g(x)$$

$$\cdot: G \times G \to G$$

$$(f,g) \mapsto f \cdot g(x) := f(x)g(x)$$

$$\circ: G \times G \to G$$

$$(f,g) \mapsto f + g(x) := f(g(x))$$

Prove or disprove the following statements:

- \blacktriangleright (G, +) is associative
- \blacktriangleright (G, –) is commutative
- \blacktriangleright (G, –) is associative
- \blacktriangleright (G, ·) is associative
- \blacktriangleright (G, ·) is commutative
- \blacktriangleright (G, \circ) is commutative
- (4) In a group (G, \cdot) show that left and right cancellation holds, i.e.
 - ▶ (left cancellation) if $x \cdot h = g \cdot h$ then x = g
 - ▶ (right cancellation) if $h \cdot x = h \cdot g$ then x = g
- (5) Let (G, \cdot) be a group. Show that for any $g, h \in G$ the following equations have unique solutions :
 - $\triangleright x \cdot g = h$
 - $ightharpoonup g \cdot x = h$
- (6) Let (G,*) be a group. Show that G has a unique idempotent element, that is and element $x \in G$ so that $x^2 = x$.
- (7) Show that if G is a group satisfying g * g = e for all $g \in G$, then G is abelian.
- (8) Show that if G is a group satisfying g * g * g = e for all $g \in G$, then G is abelian.
- (9) Decide whether the following subsets are subgroups of $G = GL(n, \mathbf{R})$:
 - ▶ $H = \{M \in G \mid \det(M) = 2\}$
 - ▶ $H = \{M \in G \mid \det(M) = \pm 1\}$
 - ▶ $H = \{M \in G \mid M \text{ is diagonal}\}\$
 - $ightharpoonup H = \{M \in G \mid M \text{ has no zeros on the diagonal}\}$

- (10) Consider the set $G = C^0(\mathbf{R})$ as a group under pointwise multiplication : $\blacktriangleright H = \{f \in G \mid f(0) = 0\}$ $\blacktriangleright H = \{f \in G \mid f(0) = 1\}$ $\blacktriangleright H = \{f \in G \mid f(1) = 1\}$ $\blacktriangleright H = \{f \in G \mid f \text{ is constant}\}$
- (11) Let G be a group and H and K are subgroups. Show that
 - \blacktriangleright H \cap K is a subgroup, and
 - ▶ $H \cup K$ is not necessarily a subgroup.