MATH 504 EXERCISES 10

A. ZEYTİN

Unless otherwise stated R is a ring.

- (1) Determine if the following maps are ring homomorphisms or not. If yes, determine ker(φ) and im(φ).
 - ► for any non-zero integer n :

$$egin{array}{c} \phi_n\colon \mathbf{Z} o \mathbf{Z} \ a\mapsto n\cdot a \end{array}$$

► for any positive integer n :

$$\begin{split} \phi_n \colon \mathrm{M}_n(\mathbf{R}) &\to \mathbf{R} \\ & \mathcal{M} \mapsto \mathrm{det}(\mathcal{M}) \end{split}$$

► for any positive integer n :

$$\begin{aligned} \phi \colon \mathrm{M}_2(\mathbf{R}) &\to \mathbf{R} \\ \begin{pmatrix} p & q \\ r & s \end{pmatrix} &\mapsto r+s \end{aligned}$$

$$\begin{array}{c} \phi_{n} \colon \mathrm{M}_{2}(\mathbf{R}) \to \mathbf{R} \\ \begin{pmatrix} p & q \\ r & s \end{pmatrix} \mapsto p \end{array}$$

- (2) Let φ : R \rightarrow S be a ring homomorphism. Decide whether the following statements hald true. If yes, give a proof, else give a counter-example :
 - ▶ If $u \in R$ is a unit of R (i.e. an invertible element), then $\varphi(u)$ is a unit of S.
 - If $\phi(u)$ is a unit of S then $u \in R$ is a unit of R.
 - If $v \in R$ is a unit of S, then $\varphi^{-1}(v)$ is a unit of R.
 - If $r \in R$ is a zero divisor then $\varphi(r)$ is a zero divisor of S. Is the converse true?
 - If $\phi(u)$ is a zero divisor of S then $u \in R$ is a zero divisor of R.
 - ▶ If $s \in S$ is a zero divisor then each element of the set $\varphi^{-1}(s)$ is a zero divisor of R.
- (3) Prove that $\mathbf{R}[X]/(X^2 + 1)$ and \mathbf{C} are isomorphic. Deduce that the ideal $(X^2 + 1)$ is a maximal ideal.
- (4) Consider the polynomial $p(X) = X^2 + 1 \in (\mathbb{Z}/3\mathbb{Z})[X]$.
 - Explicitly write each element of the ring R = (Z/3Z)[X]/(p(X)).
 - ▶ Show that R is an integral domain.
 - ▶ Find the multiplicative inverse of $X + (p(X)) \in R$.
 - ► By finding multiplicative inverses of remaining non-zero elements of R, show that R is a field. Deduce that (p(X)) is a maximal ideal.
 - ► Are R and Z/9Z isomorphic?
- (5) Prove that the rings $\mathbf{R}[X]$ and $\mathbf{Z}[X]$ are not isomorphic.
- (6) Let R be a ring and I and J are ideal of R so that $I \subseteq J$.

► Show that the map

$$\label{eq:phi} \begin{split} \phi : R/I &\to R/J \\ r+I &\mapsto r+J \end{split}$$

is a well-defined surjective ring homomorphism.

- Show that $\ker(\varphi) = I/J$
- (7) Show that the rings $\mathbf{Q}[\sqrt{-5}]$ and $\mathbf{Q}[X]/(X^2-2x+6)$ are isomorphic. Are the rings $\mathbf{Z}[\sqrt{-5}]$ and $\mathbf{Z}[X]/(X^2-2x+6)$ isomorphic?
- (8) Let R, S be two rings, $\varphi : R \to S$ be a ring homomorphism.
 - If \mathfrak{p} is a prime ideal of R and φ is surjective then $\varphi(\mathfrak{p})$ is a prime ideal of S.
 - Show that surjectivity of φ is necessary in the previous exercise.
 - Show that if \mathfrak{p} is a prime ideal of S, then $\varphi^{-1}(\mathfrak{p})$ is a prime ideal of R.
 - Show that if m is a maximal ideal of R and φ is surjective, then either φ(m)S or φ(m) is a maximal ideal of S.
 - Show that surjectivity of φ is necessary in the previous exercise.
 - Show, by an example that φ⁻¹(m) is not necessarily a maximal ideal of R even if m is a maximal ideal of S.