MATH 504

EXERCISES 11

A. ZEYTİN

Unless otherwise stated R is a commutative ring with 1.
(1) Show that being associates is an equivalence relation. Determine the equivalence classes of 0 and 1.
(2) Assume that two elements $a, b \in R$ are associates. Show that
$-a$ and b generate the same ideal, that is : $(a)=(b)$.

- a is irreducible if and only if b is irreducible.
- a is invertible if and only if b is invertible.
- a is prime if and only if b is prime.
(3) Let $R_{n}=(\mathbf{Z} / n \mathbf{Z})[X]$. For the following values of n, show that X is not irreducible.
- 15
- 21
- 22
- 30
- 210

Hint: Try to modify the method used in class for the $n=6$ case.
(4) Let R be a PID and let I be a non-zero ideal. Show that I is prime if and only if I is maximal.
(5) Let R be an integral domain. Show that R is a UFD if and only if every non-zero prime ideal contains a non-zero principal prime ideal.
(6) Show that the ring $\mathbf{R}\left[X^{2}, X^{3}\right]$ is not a UFD.
(7) In $\mathbf{Z}[\sqrt{-1}]$ find the factorization of 2 and 13 into irreducibles.
(8) In $\mathbf{Z}[\sqrt{-5}]$ show that the ideal $(3,2+\sqrt{-5})$ is not principal.
(9) If R is an integral domain, show that the ideal $I=(X, Y)$ in the ring $R[X, Y]$ is not principal. Show by an example that non-existence of zero divisors is necessary for the claim to hold.
(10) Show that $\mathbf{Z}[X]$ is a UFD but not a PID.
(11) In this exercise, we will prove that if R is a PID, then it is a UFD. R is called Noetherian if any given increasing sequence of ideals $\mathrm{I}_{1} \subseteq \mathrm{I}_{2}, \subseteq \mathrm{I}_{3} \subseteq \ldots$ in R stabilizes, that is, there is a positive integer n so that $\mathrm{I}_{n}=\mathrm{I}_{\mathrm{n}+1}=$ $\mathrm{I}_{\mathrm{n}+2}=\ldots$. Let R be a PID.

- Show that a PID is Noetherian.
- From now on we assume that R is a PID. Show that any non-invertible element of R is divisible by an irreducible element. Hint: Proceed by contradiction.
- Deduce that any $a \in R$ is a product of irreducibles and possibly an invertible element; that is, there are (not necessarily distinct) irreducible elements $p_{1}, p_{2}, \ldots, p_{n} \in R$ and $u \in R^{\times}$so that $a=u p_{1} \cdot p_{2} \cdot \ldots \cdot p_{n}$.
- Show that the above representation is unique up to associates (and reordering).

