MATH 504 EXERCISES 12

A. ZEYTİN

Unless otherwise stated R is a commutative ring with 1.

- (1) Let R be a UFD and a, b and a_0, a_1, \ldots, a_n be non-zero elements of R.
 - Define a greatest common divisor for a and b. Notice that it is well-defined only up to multiplication by units.
 - ▶ Define a greatest common divisor for more than 2 elements, say a₀, a₁,..., a_n. Denote it by gcd(a₀,..., a_n). Notice that it is well-defined only up to multiplication by units. Give an explicit example to see that gcd(a₀,..., a_n) may not be unique when R fails to be a UFD.
 - ► Define a least common multiple, lcm(a, b) for a and b. Notice that it is well-defined only up to multiplication by units.
 - ► Define a least common multiple for more than 2 elements, say a_0, a_1, \ldots, a_n . Denote it by $lcm(a_0, \ldots, a_n)$. Notice that it is well-defined only up to multiplication by units. Give an explicit example to see that $lcm(a_0, \ldots, a_n)$ may not be unique when R fails to be a UFD.
 - Verify the identity ab = gcd(a, b)lcm(a, b).
- (2) Let R be a UFD and a_0, a_1, \ldots, a_n be non-zero elements of R. A non-constant polynomial $f(x) = a_0 + a_1t + \ldots + a_nx^n \in R[x]$ is called *primitive* if 1 is a greatest common divisor of a_0, \ldots, a_n .
 - Decide whether $4x^2 + 7x 2$ and $4x^3 + 6x 10$ are primitive in $\mathbf{Z}[x]$.
 - ▶ Show that for any non-constant polynomial $f(x) \in R[x]$ there is some element $c \in R$ so that f(x) = c g(x) where $g(x) \in R[x]$ is primitive. Show that c is uniquely determined up to multiplication by units. Such a c is called the content of f.
 - Find contents of $4x^2 + 7x 2$ and $4x^3 + 6x 10 \in \mathbf{Z}[x]$.
 - Show that if $f(x), g(x) \in R[x]$ are primitive then their product is also primitive. Use induction to deduce that the product of finitely many primitive polynomials is again primitive.
 - Show that if f(x) is a non-constant primitive element of R[x] and g(x) is a divisor of f(x), then g(x) is also primitive.
- (3) Let R be a UFD. Show that if I and J are two principal ideals, then $I \cap J$ is also a principal ideal. Find its generator.
- (4) Prove that the following rings are not UFDs by finding inequivalent factorizations of appropriate elements :
 - \blacktriangleright **Z**[$\sqrt{-13}$]
 - ► $\mathbf{Z}[\sqrt{-10}]$
 - ► $\mathbf{Z}[\sqrt{-6}]$
 - \blacktriangleright **Z**[$\sqrt{10}$]
- (5) Factor $14 + 6\sqrt{-1}$ into irreducibles in $\mathbb{Z}[\sqrt{-1}]$.
- (6) Show that the ring $R = \{a + b\sqrt{-1} | a, b \in \mathbb{Z}, 2 | a \text{ and } 2 | n\}$ is not a UFD.
- (7) Let K be a field and consider the ring R = K[X, Y, Z, W] of polynomials with coefficients in K in 4 variables.
 - ► Show that the polynomial XY ZW is irreducible. Deduce that the ring R/(XY ZW) is an integral domain.
 - Show that R/(XY ZW) is not a UFD.