MATH 504 EXERCISES 2

A. ZEYTİN

Unless otherwise stated G is a group.

- (1) Show that the intersection of any collection (finite or infinite, countable or uncountable) of subgroups of a group G is again a subgroup. Deduce that for an arbitrary non-empty subset $X \subset G$ the set of all subgroups containing X, denoted $\langle X \rangle$ is a subgroup of G called the subgroup generated by X. Deduce further that if X is itself a subgroup, then the subgroup generated by X is itself, that is show that $\langle X \rangle = X$ when X is a subgroup.
 - ▶ Determine the subgroup generated by $X = \{(12), (13)\}$ in \mathfrak{S}_3 .
 - ▶ Determine the subgroup generated by $X = \{(12), (13)\}$ in \mathfrak{S}_4 .
 - ▶ If $X = \{g\}$, then show that the subgroup $\langle X \rangle = \{g^n \mid n \in \mathbf{Z}\}$. Such subgroups are called *cyclic*. If $G = \langle \{g\} \rangle$ for some $g \in G$ then G is called cyclic.
 - ► Give an example of a finite cyclic subgroup.
 - ► Give an example of an infinite cyclic subgroup.
 - ▶ Let G be a group and $a, b \in G$ be two elements. Try to list all the elements of the subgroup $\langle \{a, b\} \rangle$ if $a^2 = e = b^3$.
 - ▶ Let G be a group and $a, b \in G$ be two elements. Try to list all the elements of the subgroup $\langle \{a, b\} \rangle$ if $a^2 = e = b^3$ and ab = ba.
- (2) Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?

$$\phi\colon \mathbf{R}^\times \to \mathrm{GL}(2,\mathbf{R})$$

$$x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}$$

ightharpoons

$$\varphi \colon \mathbf{R} \to \mathrm{GL}(2,\mathbf{R})$$

$$x \mapsto \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$$

▶

$$\varphi \colon \mathrm{GL}(2,\mathbf{R}) \to \mathbf{R}$$

$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \mapsto p + s$$

$$\varphi \colon \mathrm{GL}(2,\mathbf{R}) \to \mathbf{R}$$

$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \mapsto q + r$$

▶

$$\phi \colon \mathbf{Z} \to \mathbf{Z}$$

$$n \mapsto 504n$$

(3) Let $n \in \mathbb{N}$ be an integer with n > 1. Show that if G is an abelian group, then the map

$$\phi_n\colon G\to G$$

$$g \mapsto g^n$$

is a group homomorphism. Show further that φ_n need not be a group homomorphism in general.

- (4) Show that if G is an abelian group and $\varphi \colon G \to G'$ is a group homomorphism, then $\operatorname{im}(()\varphi)$ is an abelian subgroup of G'.
- (5) Let G be a finite group, that is $|G| = n \in N$. Show that there is an integer m so that $g^m = e$ for all $g \in G$. Show that one may take m = n, that is, show that for all $g \in G$ we have $g^{|G|} = e$. Give an example where one may choose m < |G|.
- (6) Let G be a group, H be a subgroup and N be a normal subgroup of G. Show that $NH = \{nh \in G \mid n \in N, h \in H\}$ is a subgroup. Show, by an example, that this fails when N is not normal.
- (7) Show that the intersection of two normal subgroups is again a normal subgroup.
- (8) Let $\phi \colon G \to G'$ be a group homomorphism. Show that ϕ is one-to-one if and only if $\ker(\phi) = \{e\}$.
- (9) Let $\varphi \colon G \to G'$ be a group homomorphism. Define $g_1 \sim g_2$ when $\varphi(g_1) = \varphi(g_2)$.
 - ▶ Show that the mentioned relation is an equivalence relation.
 - ▶ Describe the equivalence classes of this relation.