MATH 504 EXERCISES 4

A. ZEYTİN

Unless otherwise stated G is a group.

(1) For each item in the following list, show that the map defines a group action of G on X, determine orbits, the set X/G, the stabilizers and verify orbit stabilizer theorem :

► $G = (\{\pm 1\}, \cdot), X = \mathbf{R},$

•:
$$G \times X \to X$$

 $(g, x) \mapsto g \bullet x := g \cdot x$
•: $G \times X \to X$
 $((n_1, n_2), (x, y)) \mapsto g \bullet x := (n_1 + x, n_2 + y)$
• $G = \mathfrak{S}_3, X = \mathfrak{S}_3,$
•: $G \times X \to X$
 $(g, x) \mapsto g \bullet x := g^{-1} \circ x \circ g$
• $G = \mathfrak{S}_3, X = \{$ the set of subgroups of $\mathfrak{S}_3\},$
•: $G \times X \to X$
 $(g, H) \mapsto g \bullet H := g^{-1}Hg$

▶ $G = \mathfrak{S}_4, X = \mathfrak{S}_4,$

$$\bullet \colon \mathsf{G} \times X \to X \\ (g, x) \mapsto g \bullet x := g \circ x$$

- (2) Let X be a non-empty set admitting an action of a group G.
 - Show that the set $Fix(G) := \{g \in G \mid g \bullet x = x \text{ for all } x \in X\}$ is a subgroup of G
 - Show that $Fix(G) = \bigcap_{x \in X} Stab(x)$.
- (3) Let X be a non-empty set admitting an action of a group G.
- (4) Consider the map :

•: GL(2, **R**) × **R**²
$$\rightarrow$$
 R²
(γ , (x , y)) \mapsto γ • (x , y) := $\gamma \cdot \begin{pmatrix} x \\ y \end{pmatrix}$

- Show that the above map defines an action of $GL(2, \mathbf{R})$ on \mathbf{R}^2 .
- What is the orbit of (1, 0)?
- ► What is the stabilizer of (1,0)?