MATH 504 EXERCISES 5

A. ZEYTİN

Unless otherwise stated G is a group.

- (1) Use 1, 2, 3 to number the opposite faces of a cube in \mathbb{R}^3 , say the front and back faces with 1, the left and right faces with 2, top and bottom faces with 6. Consider the action of \mathfrak{S}_3 on these labels, as rigid motions. Describe the corresponding permutation representation. What is the kernel of this action? Is it transitive? Is it faithful?
- (2) Consider the action of \mathfrak{S}_6 on the faces of a dice, numbered from 1 to 6, by acting on these numbers. Can one describe this action by rigid motions? Explain.
- (3) Describe the permutation representation of the action of \mathfrak{S}_3 on itself by multiplication from left. What is the kernel of this action? Is it transitive? Is it faithful?
- (4) Let G = Z/7Z. Describe the permutation representation of the action of G on itself by multiplication from left. What is the kernel of this action? Is it transitive? Is it faithful?
- (5) Let G = Z. Describe the permutation representation of the action of G on itself by multiplication from left. What is the kernel of this action? Is it transitive? Is it faithful?
- (6) We let $e_1 = (100)^t$, $e_2 = (010)^t$, $e_3 = (001)^t$ be the standard basis of \mathbb{R}^3 .
 - Show that the set $Q_8 = \{\pm 1, \pm e_1, \pm e_2, \pm e_3\}$ endowed with the standard cross product for the basis vectors e_1, e_2 and e_3 extended obviously to include ± 1 is a group. This group is called the *quaternion group*.
 - ► Show that this group is not abelian.
 - ► Describe the permutation representation associated to the action of Q₈ on itself by multiplication from left.
 - ▶ Compute the orbit of *e*₁. Is the action transitive?
 - Is the mentioned action faithful?
- (7) Let G be a group acting on a set X. Show that G acts faithfully on X if and only if no two distinct elements of G have the same action on each element of X.
- (8) Show that A_n , the subgroup of even permutations in \mathfrak{S}_n , is a normal subgroup.