MATH 504 EXERCISES 8

A. ZEYTİN

Unless otherwise stated R is a ring.

- (1) Let R and S be two rings.
 - ▶ Define appropriate binary operations on R × S sot hat R × S becomes a ring.
 - ▶ Show that R × S is commutative if and only if both R and S are commutative.
 - Show that $R \times S$ has identity if and only if both R and S have identity.
 - ▶ Show that R × S is never an integral domain.
 - ▶ Show that $\{(x, 0) \in R \times S | x \in R\}$ and $\{(0, y) \in R \times S | y \in S\}$ are subrings of $R \times S$. Are they ideals?
 - Let I be and ideal of R and J be an ideal of S. Is the set $I \times J$ an ideal of $R \times S$
- (2) Show that if R is a commutative ring with unity then the commutativity of addition is forced by distributivity.
- (3) Decide if the following subsets are subrings of the ring of all functions $f: \mathbf{R} \to \mathbf{R}$ under pointwise addition and multiplication, denoted by $R = F(\mathbf{R}, \mathbf{R})$?
 - $\blacktriangleright \ \{f \in R \,|\, f(t) = 1 \text{ for all } t \in \mathbf{Q}\} \subseteq R$
 - $\blacktriangleright \ \{f \in R \,|\, f(t) = 0 \text{ for all } t \in \mathbf{Q}\} \subseteq R$
 - $\blacktriangleright \ \{f\in R\,|\, f(t)=1 \text{ for all } t\in \mathbf{R}\setminus \mathbf{Q}\}\subseteq R$
 - $\blacktriangleright \ \{f \in R \,|\, f(t) = 0 \text{ for all } t \in \mathbf{R} \setminus \mathbf{Q}\} \subseteq R$
 - ▶ { $f \in R | f \text{ is a polynomial}$ } ⊆ R
 - ▶ { $f \in R | f \text{ is continuous}$ } ⊆ R
 - ► { $f \in R | f$ is differentiable} $\subseteq R$
- (4) Let R be a commutative ring with unity. Show that the set of invertible elements in R, denoted R^{\times} , is an abelian group. This group is called the unit group of R.
- (5) Let D be a square-free integer and set $R = Z[\sqrt{D}] = \{a + b\sqrt{D} | a, b \in Z\}$.
 - ► Show that R is a ring with respect to usual addition and multiplication. Deduce that R is a subring of R if and only if D > 0.
 - Show that the map N: $\mathbb{R} \to \mathbb{Z}$ defined as $N(a + b\sqrt{D}) = a^2 b^2 D$ is multiplicative : that is for $\alpha, \beta \in \mathbb{R}$, $N(\alpha \cdot \beta) = N(\alpha)N(\beta)$.
 - Deduce that an element $\alpha \in R$ is a unit if and only if $N(\alpha) = \pm 1$.
 - Use this information to determine $R^{\times} = (\mathbf{Z}[\sqrt{D}])^{\times}$ when $D \cong 1 \pmod{4}$
 - ▶ Use this information to determine $R^{\times} = (\mathbf{Z}[\sqrt{D}])^{\times}$ when $D \cong 2,3 \pmod{4}$
- (6) Determine the unit group of the following rings :
 - $\blacktriangleright R = (F(\mathbf{R}, \mathbf{R}), +, \circ)$
 - $\blacktriangleright R = (F(\mathbf{R}, \mathbf{R}), +, \cdot)$
- (7) Let R be a commutative ring with unity and I, J be ideals of R. Show that the following sets are again ideals of R :
 - ► I∩J
 - $\blacktriangleright I + J = \{ \alpha + \beta \in R \, | \, \alpha \in I, \, \beta \in J \}$
 - $\blacktriangleright IJ = \{ \alpha\beta \in R \mid \alpha \in I, \beta \in J \}$
 - ▶ $\sqrt{I} = \{x \in R \mid x^n \in I \text{ for some } n \in \mathbf{Z}\}$