MATH 518 EXERCISES 1

A. ZEYTİN

- 1. We let N = (0, 1), ℓ denote the line with equation y = 0, and C denote the unit circle with equation $x^2 + y^2 = 1$ in \mathbb{R}^2 . Let $\varphi: \ell \to C \setminus \{N\}$ denote the corresponding stereographic projection.
 - Compute the inverse, $\varphi^{-1} : \mathcal{C} \setminus \{N\} \to \ell$, of φ as a function of x and y. Compute the compositions : $\varphi \circ \varphi^{-1}$ and $\varphi^{-1} \circ \varphi$.
 - Show that (t, 0) is a rational point on l, that is $t \in \mathbf{Q}$, if and only if both x and y coordinates of $\varphi((t, 0))$ are rational. Deduce that there are infinitely many right triangles with integer side lengths.
 - Compute $\varphi((t, 0))$ and $\varphi((\frac{1}{t}, 0))$. Describe the corresponding transformation in \mathbb{R}^2 relating these two points on \mathcal{C} .
 - ► Carry out the computations describing the stereographic projection from the "south pole" S = (0, -1) instead of the "north pole" N = (0, 1). Namely, calculate $\psi: \ell \to C \setminus \{S\}$ and $\psi^{-1}: C \setminus \{S\} \to \ell$ explicitly.
- 2. We let N = (0, 0, 1), \mathcal{P} denote the plane with equation z = 0, and S denote the unit sphere with equation $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 . Let $\varphi : \mathcal{P} \to S \setminus \{N\}$ denote the corresponding stereographic projection.
 - Compute the inverse, φ^{-1} : $\mathbb{S} \setminus \{N\} \to \mathcal{P}$, of φ as a function of x, y and z. Compute the compositions : $\varphi \circ \varphi^{-1}$ and $\varphi^{-1} \circ \varphi$.
 - ► Is it true that if (s, t, 0) is a rational point on \mathcal{P} , that is $s, t \in \mathbf{Q}$, if and only if both x, y and z coordinates of $\varphi((s, t, 0))$ are rational.
 - Compute φ((s, t, 0)) and φ((s, ¹/_t, 0)). Describe the corresponding transformation in R³ relating these two points on S.
 - Compute $\varphi((s, t, 0))$ and $\varphi((\frac{1}{s}, t, 0))$. Describe the corresponding transformation in \mathbb{R}^3 relating these two points on S.
 - ► Carry out the computations describing the stereographic projection from the "south pole" S = (0, 0, -1) instead of the "north pole" N = (0, 0, 1). Namely, calculate $\psi: \mathcal{P} \to S \setminus \{S\}$ and $\psi^{-1}: S \setminus \{S\} \to \ell$ explicitly.
 - ► Recall that we have identified the points in the plane \mathcal{P} with complex numbers via $(s, t, 0) \mapsto (z = s + it)$; where $i = \sqrt{-1}$. Let \mathbb{D} denote the unit disk, that is the set $\{z \in \mathbf{C} : |z| < 1\}$, in \mathbf{C} . Compute $\varphi(\mathbb{D})$. Compare the boundaries of \mathbb{D} in \mathbf{C} and in \mathbb{S} .
 - ► Let \mathbb{H} denote the half plane, that is the set { $z = s + it \in \mathbb{C}$: t > 0} in \mathbb{C} . Compute $\varphi(\mathbb{H})$.
 - For any $z \in C$, find the transformation of \mathbb{R}^3 relating the points $\varphi(z)$ and $\varphi(-z)$. Compare the boundaries of \mathbb{H} in \mathbb{C} and in \mathbb{S} .