MATH 518 EXERCISES 3

A. ZEYTİN

1. (Defining tangent space) Let $P = (X_o, Y_o) \in \mathbf{R}^2 \sim \mathbf{C}$ be a fixed point. We define :

 $\widehat{T_P} := \{\gamma \colon (-\epsilon, \epsilon) \to \mathbf{R}^2 \, | \, \epsilon > 0, \, \gamma(t) = (x(t), y(t)) \text{ is a smooth curve}^1 \text{ with } \gamma(0) = (x(0), y(0)) = P = (X_o, Y_o) \}.$

Two curves say γ_1 and γ_2 in $\widehat{T_P}$ are called equivalent and write $\gamma_1 \sim \gamma_2$, if $\gamma'_1(0) = \gamma'_2(0)$, that is when they have the same *tangent vector* at the point P.

- Find two different curves that are equivalent to the curve $\gamma(t) = (t, t)$ at P = (0, 0).
- Find two different curves that are equivalent to the curve $\gamma(t) = (t, t^2)$ at P = (0, 0).
- Find two different curves that are equivalent to the curve $\gamma(t) = (t + 1, t^2 1)$ at P = (1, -1).
- Find two different curves that are equivalent to the curve $\gamma(t) = (t + 1, t^2 1)$ at P = (0, 0).
- ► Show that ~ is an equivalence relation.
- Show that for any element $\gamma \in \widehat{T_P}$, its equivalence class, denoted by [, gamma], contains infinitely many curves.
- Show that $\widehat{T_P}$ is a two dimensional vector space.
- 2. We define the *unit disk* in **C** as :

$$\mathbb{D}:=\{z\in\mathbf{C}\,|\,|z|<1\}.$$

Endow \mathbb{D} with the Poincaré arc-length element $\rho(z) = \frac{2}{1-|z|^2}$. Fix the two points $z_1 = \frac{1}{2}(1+i)$ and $z_2 = 1$

 $\frac{1}{2}(1-i).$

- Considering \mathbb{D} as a subset of \mathbb{R}^2 , calculate the Poincaré arc-length element $\rho(z)$ as a function of x and y.
- Verify that z_1 and z_2 are elements of \mathbb{D} .
- ▶ Parametrize the line segment l joining z_1 to z_2 and calculate its length using the Poincaré arc-length element.
- ▶ Let C be the circle of center 0 and radius $\sqrt{2}/2$. Notice that $z_1, z_2 \in C$. Parametrize the two paths on C joining z_1 to z_2 (one oriented counter clockwise and other clockwise) and calculate their lengths using the Poincaré arc-length element.
- ► This time, let D be the circle with radius $\sqrt{5}/2$ and center $3/2 \in \mathbb{C}$. Let γ be the part of D lying inside D. Notice again that the points z_1 and z_2 are points on D. Parametrize the part of D that lies inside \mathbb{D} and calculate the length of γ using the Poincaré arc-length element. Among the three lengths you've calculated, which one is smallest, which one is largest? Can you explain this ordering by looking at the formulation of the arc-length element $\rho(z)$?
- ► For a real number $r \in (0, 1)$ let $C_r = \{z \in \mathbf{C} | |z| = r\} \subset \mathbb{D}$ be the circle of radius r. Calculate the circumference of C_r using the Poincaré arc-length element.
- ► Fix some real number $r \in (0, 1)$ and let $z = i \cdot r$. Show that the length of the line segment joining 0 to $z = i r r i s ln \begin{pmatrix} 1+r \end{pmatrix}$

$$z = i \cdot r \text{ is } \ln \left(\frac{1+1}{1-r} \right)$$

- More generally, for any $z_o \in \mathbb{D} \setminus \{0\}$ we let γ_{z_o} be the line joining z_o to $0 \in \mathbb{D}$. Calculate the length of γ_{z_o} using the Poincaré arc-length element.
- 3. Fix some $z \in \mathbb{H}$ and consider the function $f(z) = \frac{z \cdot i + 1}{z + i}$. Verify the following equality

$$\frac{2f'(z)}{1-|f(z)|^2} = \frac{1}{\mathrm{im}(z)}$$

4. Verify that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is an element of $SL_{(2, \mathbf{R})}$ and describe geometrically its action on \mathbb{H} .

5. Let $a, b \in \mathbf{R}$ be two arbitrary real numbers, with a > 0. Show that all transformations of the form $z \mapsto az + b$ can be realized as an element of $SL_{(2, \mathbf{R})}$.