MATH 518 EXERCISES 4

A. ZEYTİN

1. In this long exercise, we will understand more the action of $GL(2, \mathbb{C})$ (that is the group of 2 \times 2 matrices with non-zero determinant) on $\mathbf{C} \cup \{\infty\}$ that we defined in this week's quiz; namely, we defined :

$$: \operatorname{GL}(2, \mathbf{C}) \times \mathbf{C} \cup \{\infty\} \to \mathbf{C} \cup \{\infty\} \\ \left(\begin{pmatrix} p & q \\ r & s \end{pmatrix}, z \right) \mapsto \frac{pz + q}{rz + s}.$$

Show that given any three *distinct* complex numbers z_1 , z_2 , z_3 in C, the map

•

$$\mathfrak{m}(z) := \frac{(z_1 - z)}{(z_3 - z)} \frac{(z_3 - z_2)}{(z_1 - z_2)}$$

satisfies :

 $- m(z_1) = 0$ $- m(z_2) = 1$

$$- m(z_2) = 1$$

-
$$\mathfrak{m}(z_3) = \infty$$

- Extend the previous exercise to $\mathbf{C} \cup \{\infty\}$, that is explain what to do if one of z_i is equal to ∞ .
- Given any element $M = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in GL(2, \mathbb{C})$, and any non-zero complex number α , show that the action of M and α M on C \cup { ∞ } are the same. In particular, given any map $\frac{pz+q}{rz+s}$ from C \cup { ∞ } to itself with

 $ps - qr \neq 0$, there is at least one element of $SL(2, \mathbb{C})$ with the same action on $\mathbb{C} \cup \{\infty\}$.

- ▶ Conclude that given two triples of distinct elements of $\mathbf{C} \cup \{\infty\}$, say z_1, z_2, z_3 and w_1, w_2, w_3 , there is at least one element of $SL(2, \mathbb{C})$ sending z_i to w_i for i = 1, 2, 3. Technically speaking, we say that $SL(2, \mathbb{C})$ acts *triply transitively* on $\mathbf{C} \cup \{\infty\}$.
- 2. Given four *distinct* complex numbers in C we define their *cross ratio*, denoted $[z_1, z_2, z_3, z_4]$, as :

$$[z_1, z_2, z_3, z_4] := \frac{(z_1 - z_4)}{(z_3 - z_4)} \frac{(z_3 - z_2)}{(z_1 - z_2)}.$$

- ► Calculate the following cross ratios : [1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2] and [4, 1, 2, 3].
- Calculate the following cross ratios : $[\sqrt{-1}, \sqrt{-2}, \sqrt{-3}, \sqrt{-4}], [\sqrt{-2}, \sqrt{-3}, \sqrt{-4}, \sqrt{-1}], [\sqrt{-3}, \sqrt{-4}, \sqrt{-1}, \sqrt{-2}]$ and $[\sqrt{-4}, \sqrt{-1}, \sqrt{-2}, \sqrt{-3}].$
- Calculate the following cross ratios : $[1, -1, \sqrt{-1}, -\sqrt{-1}]$, $[-1, \sqrt{-1}, -\sqrt{-1}, 1]$, $[\sqrt{-1}, -\sqrt{-1}, 1, -1]$ and $[-\sqrt{-1}, 1, -1, \sqrt{-1}].$
- Extend the cross ratio from C to $C \cup \{\infty\}$ by way of taking limits. More precisely, if $z_1 = \infty$ then we define

$$[\infty, z_2, z_3, z_4] := \lim_{z \to \infty} \frac{(z - z_4)}{(z_3 - z_4)} \frac{(z_3 - z_2)}{(z - z_2)}$$

We define $[z_1, \infty, z_3, z_4]$, $[z_1, z_2, \infty, z_4]$ and $[z_1, z_2, z_3, \infty]$ similarly. Calculate $[-1, 0, 1, \infty]$, $[\sqrt{-1}, \sqrt{-2}, \sqrt{-3}, \infty]$ and $[1, \sqrt{-1}, -1, \infty]$.

• Let $M \in SL(2, \mathbb{C})$ be an arbitrary element. Show that

$$[z_1, z_2, z_3, z_4] = [M \bullet z_1, M \bullet z_2, M \bullet z_3, M \bullet z_4].$$

In technical terms, we say that cross ratio is *invariant* under the action of $SL(2, \mathbb{C})$.

- ▶ Compute $[\infty, 0, 1, z]$; where $z \in \mathbb{C} \setminus \{0, 1\}$. Deduce that $[\infty, 0, 1, z] \in \mathbb{R}$ if and only if $z \in \mathbb{R}$.
- Conclude that the points z_1, z_2, z_3, z_4 lie on a circle or on a line in $\mathbb{C} \cup \{\infty\}$ if and only if $[z_1, z_2, z_3, z_4] \in \mathbb{R}$.
- 3. Decide whether the following quadruple of points lie on a circle :

▶
$$1 + \sqrt{-1}, 1 - \sqrt{-1}, 0, \sqrt{-4}$$

►
$$2 - \sqrt{-1}, 2 + \sqrt{-1}, 2 + \sqrt{-2}, 2 - \sqrt{-2}$$

- 4. Let $z_1 = x_1 + \sqrt{-1}y_1$ and $z_2 = x_2 + \sqrt{-1}y_2$ be two points in \mathbb{H} with $\operatorname{re}(z_1) \neq \operatorname{re}(z_2)$. Our aim is to find the circle that is perpendicular to $\partial \mathbb{H} = \mathbf{R} \cup \{\infty\}$.
 - We let $\ell(z_1, z_2)$ be the Euclidean line joining z_1 to z_2 , and z_3 be the midpoint of z_1 and z_2 . Find an equation of the line perpendicular to $\ell(z_1, z_2)$ passing through z_3 . Call this line $\overline{\ell(z_1, z_2)}$.
 - ▶ Find the intersection point of $l(z_1, z_2)$ with $\partial \mathbb{H}$. Call this point z_0 . Convince yourselves that this should be the center of the circle we are looking for.
 - Verify that $z_o \in \mathbf{R}$.
 - Verify that the Euclidean distance between z_1 and z_0 is equal to that of z_2 and z_0 . Call this distance r.
 - Using cross ratio that we defined in the previous exercise, verify that $z_0 r, z_1, z_2, z_0 + r$ lie on a circle.
- 5. Compute the hyperbolic distance between the following points of \mathbb{H}

▶
$$z_1 = \sqrt{-1}, z_2 = 1 + \sqrt{-1}$$

- ▶ $z_1 = 1 + \sqrt{-1}, z_2 = 2 + \sqrt{-1}$
- ► $z_1 = \sqrt{-12}, z_2 = 1 + \sqrt{-12}$
- $z_1 = 3 + \sqrt{-1}, z_2 = 3 + \sqrt{-12}$ $z_1 = 1 + \sqrt{-1}\frac{1}{2}, z_2 = \sqrt{-1}\frac{1}{2}$
- 6. Endow **R** with the usual Euclidean metric (d(x, y) = |x y|). Which of the following transformations are isometries : • $f(x) = \frac{x-3}{4}$ • $f(x) = x^3$

 - ► f(x) = -2x
 - ► f(x) = x 2
- 7. Endow **R**² with the usual Euclidean metric $(d((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2})$. Which of the following transformations are isometries :
 - ► f(x,y) = (x+1, y-3)
 - f(x) = (3x, 2y)
- 8. Let (X, d) be a metric space and m: $X \to X$ and g: $X \to X$ be two self-isometries of X, in particular f and g are both surjective. Show the following fundamental properties :
 - f is injective, and therefore a bijection.
 - ► f is continuous.
 - f^{-1} is an isometry.
 - ▶ f \circ q is an isometry. Deduce that the set of all isometries of a metric space (X, d), denoted Isom(X) is a group under composition.