MATH 518

EXERCISES 7

A. ZEYTİN

1. Write a double integral and calculate (if possible) areas of the following regions in \mathbb{H} :

- the region bounded by $\{z \in \mathbb{H}||\operatorname{re}(z)|=1\}$, and $\{z \in \mathbb{H}||z|=1\}$.
- the region bounded by $\left\{z \in \mathbb{H}||\operatorname{re}(z)|=s\}\right.$, and $\left\{z \in \mathbb{H}||z|=s\}\right.$; where $s \in \mathbf{R}_{+}$. Investigate what happens if $s \rightarrow \infty$.
- the region bounded by $\{z \in \mathbb{H}||z|=1\},\{z \in \mathbb{H}| | z \mid=2\},\{z \in \mathbb{H} \mid \arg (z)=\pi / 4\}$ and $\{z \in \mathbb{H} \mid \arg (z)=3 \pi / 4\}$.
- the region bounded by $\{z \in \mathbb{H}||z|=1\},\{z \in \mathbb{H}| | z \mid=2\}$ and $\{z \in \mathbb{H}||\arg (z)-\pi / 2|=\theta\}$; where $\theta \in(0, \pi / 2)$. Investigate what happens if $\theta \rightarrow 0$ and if $\theta \rightarrow \pi / 2$.
- the region bounded by $\{z \in \mathbb{H}||z|=1\},\{z \in \mathbb{H}| | z \mid=2\},\{z \in \mathbb{H}| | z-3 / 2 \mid=1 / 2\}$ and $\{z \in \mathbb{H}||z+3 / 2|=1 / 2\}$.
- the region bounded by $\{z \in \mathbb{H}||z|=1 / 2\},\{z \in \mathbb{H}| | z-1 \mid=1 / 2\},\{z \in \mathbb{H}| | z+1 / 2 \mid=1 / 2\}$ and $\{z \in \mathbb{H}||z|=3 / 2\}$.

2. Write a double integral and calculate (if possible) areas of the following regions in \mathbb{D} :

- the region bounded by $\{z \in \mathbb{D} \mid \operatorname{re}(z)=0\},\{z \in \mathbb{D} \mid \operatorname{im}(z)=0\}$ and $\{z \in \mathbb{D}||z-(1+i)|=1\}$.
- the region bounded by $\{z \in \mathbb{D} \mid \operatorname{re}(z)=0\},\{z \in \mathbb{D} \mid \operatorname{im}(z)=0\},\{z \in \mathbb{D} \mid \operatorname{re}(z)=1 / 2\}$ and $\{z \in \mathbb{D} \mid \operatorname{im}(z)=1 / 2\}$.
- the region bounded by $\{z \in \mathbb{D} \mid \operatorname{re}(z)=0\},\{z \in \mathbb{D} \mid \operatorname{im}(z)=0\},\{z \in \mathbb{D} \mid \operatorname{re}(z)=s\}$ and $\{z \in \mathbb{D} \mid \operatorname{im}(z)=1 / 2\} ;$ where $s \in(0,1)$. Investigate what happens when $s \rightarrow 0$ and when $s \rightarrow 1$.
- the region bounded by $\{z \in \mathbb{D} \mid \operatorname{re}(z)=0\},\{z \in \mathbb{D} \mid \operatorname{im}(z)=0\},\{z \in \mathbb{D} \mid \operatorname{re}(z)=1 / 3\}$ and $\{z \in \mathbb{D} \mid \operatorname{im}(z)=s\} ;$ where $s \in(0,1)$. Investigate what happens when $s \rightarrow 0$ and when $s \rightarrow 1$.

