MATH 518 EXERCISES 7

A. ZEYTİN

- 1. Write a double integral and calculate (if possible) areas of the following regions in \mathbb{H} :
 - the region bounded by $\{z \in \mathbb{H} | |\operatorname{re}(z)| = 1\}$, and $\{z \in \mathbb{H} | |z| = 1\}$.
 - ▶ the region bounded by $\{z \in \mathbb{H} \mid |\operatorname{re}(z)| = s\}$, and $\{z \in \mathbb{H} \mid |z| = s\}$; where $s \in \mathbb{R}_+$. Investigate what happens if $s \to \infty$.
 - ▶ the region bounded by $\{z \in \mathbb{H} \mid |z| = 1\}, \{z \in \mathbb{H} \mid |z| = 2\}, \{z \in \mathbb{H} \mid \arg(z) = \pi/4\} \text{ and } \{z \in \mathbb{H} \mid \arg(z) = 3\pi/4\}.$
 - ▶ the region bounded by $\{z \in \mathbb{H} \mid |z| = 1\}$, $\{z \in \mathbb{H} \mid |z| = 2\}$ and $\{z \in \mathbb{H} \mid |\arg(z) \pi/2| = \theta\}$; where $\theta \in (0, \pi/2)$. Investigate what happens if $\theta \to 0$ and if $\theta \to \pi/2$.
 - ▶ the region bounded by $\{z \in \mathbb{H} \mid |z| = 1\}$, $\{z \in \mathbb{H} \mid |z| = 2\}$, $\{z \in \mathbb{H} \mid |z 3/2| = 1/2\}$ and $\{z \in \mathbb{H} \mid |z + 3/2| = 1/2\}$.
 - the region bounded by $\{z \in \mathbb{H} \mid |z| = 1/2\}, \{z \in \mathbb{H} \mid |z-1| = 1/2\}, \{z \in \mathbb{H} \mid |z+1/2| = 1/2\} \text{ and } \{z \in \mathbb{H} \mid |z| = 3/2\}.$
- 2. Write a double integral and calculate (if possible) areas of the following regions in \mathbb{D} :
 - ▶ the region bounded by $\{z \in \mathbb{D} | \operatorname{re}(z) = 0\}, \{z \in \mathbb{D} | \operatorname{im}(z) = 0\}$ and $\{z \in \mathbb{D} | |z (1 + i)| = 1\}$.
 - ▶ the region bounded by $\{z \in \mathbb{D} | \operatorname{re}(z) = 0\}, \{z \in \mathbb{D} | \operatorname{im}(z) = 0\}, \{z \in \mathbb{D} | \operatorname{re}(z) = 1/2\} \text{ and } \{z \in \mathbb{D} | \operatorname{im}(z) = 1/2\}.$
 - ▶ the region bounded by $\{z \in \mathbb{D} | \operatorname{re}(z) = 0\}$, $\{z \in \mathbb{D} | \operatorname{im}(z) = 0\}$, $\{z \in \mathbb{D} | \operatorname{re}(z) = s\}$ and $\{z \in \mathbb{D} | \operatorname{im}(z) = 1/2\}$; where $s \in (0, 1)$. Investigate what happens when $s \to 0$ and when $s \to 1$.
 - ▶ the region bounded by $\{z \in \mathbb{D} | \operatorname{re}(z) = 0\}$, $\{z \in \mathbb{D} | \operatorname{im}(z) = 0\}$, $\{z \in \mathbb{D} | \operatorname{re}(z) = 1/3\}$ and $\{z \in \mathbb{D} | \operatorname{im}(z) = s\}$; where $s \in (0, 1)$. Investigate what happens when $s \to 0$ and when $s \to 1$.