MATH 518 EXERCISES 8

A. ZEYTİN

1. Compute (hyperbolic or Poincaré) areas of the triangles whose vertices are given as :

•
$$v_1 = 2, v_2 = 3 + \sqrt{-1} v_3 = \infty$$
 in \mathbb{H}

- $v_1 = 0, v_2 = 1, v_3 = \frac{3 + \sqrt{-3}}{2}$ in \mathbb{H}
- $v_1 = 1 + \sqrt{-3}, v_2 = 3 + \sqrt{-3}, v_3 = 2$ in \mathbb{H}
- ▶ $v_1 = 2, v_2 = 3 + \sqrt{-3}, v_3 = 4$ in H ▶ $v_1 = 0, v_2 = 1, v_3 = \sqrt{-1}$ in D
- 2. Prove that
 - ▶ the hyperbolic area of a hypebolic quadrtilateral is $2\pi \sum_{i=1}^{4}$; where α_i are the internal angles of the quadrilateral.
 - ► the hyperbolic area of a hyperbolic n-gon, denoted by P_n with internal angles $\alpha_1, \alpha_2, \ldots, \alpha_n$ is given by the formula :

Area(
$$P_n$$
) = $(n-2)\pi - \sum_{i=1}^n \alpha_i$.

- 3. Let G be a group acting on a non-empty set X. Show that
 - for every fixed $g \in G$, the map :

$$\begin{split} \iota_g : X \to X \\ x \mapsto \iota_g(x) := g \bullet x \end{split}$$

is a bijection and therefore an element of the set of all permutations of X, denoted by $\mathfrak{S}(X)$. <u>Hint:</u> What is ι_q^{-1} ?

▶ Deduce that the map

$$\begin{split} \phi: G \to \mathfrak{S}(X) \\ g \mapsto \iota_g \end{split}$$

is a group homomorphism. This is called the *permutation representation* of the action of G on X.

- ▶ Recall that the action of G on X is called faithful (or effective) if $q \bullet x = x$ implies $q = e_G$. Show that faithfulness of a group action is equivalent to φ being injective. <u>Hint</u>: Study elements of ker(φ).
- ▶ Recall that the action of G on X is called transitive if for and $x, y \in X$, there is a $g \in G$ with $y = g \bullet x$. Show that an action is transitive if and only if |G/X| = 1.
- 4. Given an action of a group G on a non-empty set X, for any element $x \in X$ we define the *stabilizer* of x in G as :

$$G_x = \operatorname{Stab}_G(x) := \{g \in G \,|\, g \bullet x = x\}$$

- Show that G_x is a subgroup of G.
- Give an example to show that G_x need not be a normal subgroup of G.
- Let $x, y \in X$ we two elements so that $y = g \bullet x$. Show that $G_y = gG_x g^{-1}$.
- For any $x \in X$ show that the map

$$\begin{split} \iota_x: [x] \to G/G_x \\ g \bullet x \mapsto gG_x \end{split}$$

is a well-defined bijection.

Deduce the orbit-stabilizer theorem :

$$|[\mathbf{x}]| = [\mathbf{G} : \mathbf{G}_{\mathbf{x}}]$$

- 5. Let G be a group acting on a non-empty set X. We say that the action is *free* (or G acts freely on X) if for all $x \in X$ and $g \in G \setminus \{e_G\}$ we have $g \bullet x \neq x$. Show that G acts freely if and only if $G_x = \{e_G\}$ for all $x \in X$.
- 6. We let X be the set of all 2×2 symmetric positive definite matrices; that is

$$X = \left\{ q = \begin{pmatrix} a & b \\ b & c \end{pmatrix} | a, b, c \in \mathbf{R}, \ (XY)q(XY)^{t} \ge 0 \text{ for all } (XY) \in \mathbf{R}^{2} \right\}$$

Here, \cdot^{t} denotes the transpose.

- Give a criterion for positive definiteness of $q \in X$ in terms of a and det(q).
- Show that the set X admits an action of $GL(2, \mathbf{R})$ defined as follows :

$$\operatorname{GL}(2,\mathbf{R}) \times X \to X$$

$$(A,q) \mapsto A \bullet q := AqA^{\dagger}$$

- ▶ Show that this action is transitive. <u>Hint:</u> Use diagonalizability of symmetric matrices.
- ► Is this action faithful?
- ► Is this action free?
- Generalize this to square matrices of arbitrary size.
- 7. On the set $X = \mathbb{R}^n \setminus \{0\}$ we define an action of the multiplicative group $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ as :

$$(\lambda, \mathbf{v}) \mapsto \lambda \bullet \mathbf{v} := \lambda \mathbf{v}$$

- Show that this defines an action of \mathbf{R}^{\times} on X.
- ► Is this action transitive?
- ► Is this action faithful?
- ► Is this action free?
- ► Let $L = \{\ell \subset \mathbb{R}^n | \ell \text{ is a line through origin in } \mathbb{R}^n\}$, that is the set of lines passing through origin in \mathbb{R}^n . Establish a bijection between X/\mathbb{R}^{\times} and L. <u>Hint:</u> Start with the particular case where n = 2 and n = 3.
- 8. Consider the additive group $G = Z \times Z$. Consider the following map :

$$\bullet: G \times \mathbf{C} \to \mathbf{C}$$

$$((\mathfrak{n},\mathfrak{m}),\mathfrak{x}+\mathfrak{y}\sqrt{-1})\mapsto (\mathfrak{n},\mathfrak{m})\bullet(\mathfrak{x}+\mathfrak{y}\sqrt{-1}):=\mathfrak{x}+\mathfrak{n}+(\mathfrak{y}+\mathfrak{m})\sqrt{-1}$$

- ► Show that this is indeed an action of G on C.
- ► Is this action transitive?
- ► Is this action faithful?
- ► Is this action free?
- ► Establish a bijection between C/G and $S^1 \times S^1$; where $S^1 = \{z \in C \mid |z| = 1\}$. <u>Hint</u>: It might be easier to first establish a bijection between R/Z and S^1 .