MATH 504

EXERCISES 10

A. ZEYTİN

Every ring R is assumed to be commutative with 1_{R}.
(1) Show that if R is a principal ideal domain, then every non-zero prime ideal is maximal.
(2) Show that if k is a field then $k[X]$ is a principal ideal domain. Is $k[X, Y]$ a principal ideal domain?
(3) Construct fields of orders $4,8,9,25$ and 27.
(4) Show that every abelian group is a \mathbf{Z} module.
(5) Let M be an R module and N a subset of M. Show that N is an R-submodule of M if and only if:

- $N \neq \emptyset$, and
- $m+m^{\prime} \in N$ for all $r \in R$ and $m, m^{\prime} \in N$.
(6) Prove that R^{\times}(i.e. the unit group of R) and satisfy the axioms of a group action, i.e. R^{\times}acts on M as a group.
(7) Let R be a ring. Consider R^{n} as an R module (as discussed in the lecture). Decide whether the following sets are submodules of M :
- $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in I_{i}\right\} ;$ where I_{i} is an ideal of R for each $i=1,2, \ldots, n$
- $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in R_{i}\right\}$; where R_{i} is a sub-ring of R for each $i=1,2, \ldots, n$
- $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1}+x_{2}+\ldots+x_{n}=0\right\}$
- $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1}+x_{2}+\ldots+x_{n}=1\right\}$
- $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=0\right\}$ for some fixed $a_{i} \in R$
- $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=1\right\}$
(8) Show that the intersection of any non-empty collection of submodules of an R module M is again a submodule. Is the union of two submodules again a submodule?
(9) Let M be an R-module. An element $\in M$ is called a torsion element of $r m=0$ for some $r \in R$. The set of all torsion elements in M is denoted by : $\operatorname{Tor}(M)$. Show that
- $\operatorname{Tor}(M)$ is not necessarily a submodule of M.
- $\operatorname{Tor}(M)$ is a submodule of M if R is an integral domain.
- if R is not an integral domain, show that any non-zero R-module M has non-trivial torsion.
- An R -module M is called torsion if $\mathrm{M}=\operatorname{Tor}(\mathrm{M})$. Show that any finite abelian group is a torsion Z -module.
- Is the converse of the previous exercise true, that is, is every torsion module a finite abelian group?
(10) For any R module M, the set $\operatorname{Hom}_{R}(M, M)$ is called the endomorphism ring of M and denoted usually by End(M).
- Show that $\operatorname{End}(M)$ is a ring.
- Show that for any fixed element $\mathrm{r} \in \mathrm{R}$, the map $\mathrm{p}_{\mathrm{r}}(\mathrm{m}):=\mathrm{rm}$ defines an element of $\operatorname{End}(M)$.
(11) Determine all Z module homomorphisms
- from $\mathbf{Z} / 12 \mathrm{Z}$ to $\mathbf{Z} / 18 \mathbf{Z}$
- from $\mathbf{Z} / 30 \mathbf{Z}$ to $\mathbf{Z} / 21 \mathbf{Z}$
- from $\mathrm{Z} / 12 \mathrm{Z}$ to $\mathrm{Z} / 12 \mathrm{Z}$
(12) Let M be an R-module and let N be an R-submodule of M. Show that if both N and M / N are finitely generated, then so is M.
(13) Let M, M^{\prime} and N be three R-modules. Prove that the following R-module isomorphisms :
- $\operatorname{Hom}_{\mathrm{R}}\left(\mathrm{M} \oplus \mathrm{M}^{\prime}, \mathrm{N}\right) \cong \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N}) \oplus \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{M}^{\prime}, \mathrm{N}\right)$
- $\operatorname{Hom}_{\mathrm{R}}\left(\mathrm{N}, \mathrm{M} \oplus \mathrm{M}^{\prime}\right) \cong \operatorname{Hom}_{\mathrm{R}}(\mathrm{N}, \mathrm{M}) \oplus \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{N}, \mathrm{M}^{\prime}\right)$
(14) Show that the direct sum of two free R-modules is free.
(15) Show that if $M \subseteq M^{\prime} \subseteq M^{\prime \prime}$ are three R-modules then The modules $\left(M / M^{\prime \prime}\right) /\left(M^{\prime} / M^{\prime \prime}\right)$ and M / M^{\prime} are isomorphic.

