MATH 504 EXERCISES 10

A. ZEYTİN

Every ring R is assumed to be commutative with 1_R .

(1) Let M be a finitely generated R module and I be an ideal of R. Suppose that $\varphi: M \to M$ is an R-module homomorphism of M with the property that $im(\varphi) \subseteq I \cdot M$. Show that there are elements $\alpha_0, \alpha_1, \ldots, \alpha_n \in I$ so that

$$\alpha_0 + \alpha_1 \varphi + \ldots + \alpha_n \varphi^n = 0_M$$

as an R-module homomorphism from M to M. <u>Hint</u>: As M is finitely generated, you may choose a set of generators, say x_i . Write $\varphi(x_i)$ in terms of these generators and form a "matrix". Then use the adjoint of this "matrix".

- (2) Using the previous exercise prove a version of chinese remainder theorem, that is if I is an ideal of R so that $I \cdot M = M$; where M is a finitely generated R-module, then there exists some $x \in R$ so that $x \equiv 1 \pmod{I}$ so that xM = 0.
- (3) (Splitting exact sequences) Suppose that there are two exact sequences of the form :

$$M'' \to M \to M' \to 0$$
 and $M' \to N \to N''$.

Show that one can obtain the following exact sequence :

$$M'' \to M \to N \to N''.$$

(4) (Gluing exact sequences) Say we are given an exact sequence of the form :

$$M'' \xrightarrow{f} M \xrightarrow{g} N \xrightarrow{h} N''$$

Show that the sequences

$$M'' \xrightarrow{f} M \xrightarrow{g} K \to 0$$
 and $K \xrightarrow{\iota} N \xrightarrow{h} N'';$

where K = im(g) = ker(h).

- (5) (Splitting lemma) Let $0 \to M'' \xrightarrow{f} M \xrightarrow{g} M' \to 0$ be a short exact sequence. Show that the following statements are equivalent :
 - ► $M \cong M'' \oplus M'$
 - ► f has a left inverse, that is, there is an R-module homomorphism $\varphi \colon M \to M''$ so that $\varphi \circ f = id_{M''}$

► g has a right inverse, that is, there is an R-module homomorphism $\psi: M' \to M$ so that $f \circ \psi = id_{M'}$. If one of the above equivalent conditions hold, then the corresponding sequence is called *split exact*.

- (6) Fix a field K. Show that every short exact sequence $0 \rightarrow V'' \rightarrow V \rightarrow V' \rightarrow 0$ of K-vector spaces is split exact.
- (7) Given the fact that the sequence :

$$0 \to \mathbf{Z} \xrightarrow{\mathsf{t}} \mathbf{Z} \oplus \mathbf{Z} \to \mathbf{Z} \oplus (\mathbf{Z}/2\mathbf{Z}) \to 0$$

is exact, what can you say about the Z-module homomorphism f?