MATH 504

A. ZEYTİN

Every ring R is assumed to be commutative with 1_{R}.
(1) Let M be a finitely generated R module and I be an ideal of R. Suppose that $\varphi: M \rightarrow M$ is an R-module homomorphism of M with the property that $\operatorname{im}(\varphi) \subseteq I \cdot M$. Show that there are elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \in I$ so that

$$
\alpha_{0}+\alpha_{1} \varphi+\ldots+\alpha_{n} \varphi^{n}=0_{M}
$$

as an R-module homomorphism from M to M. Hint: As M is finitely generated, you may choose a set of generators, say x_{i}. Write $\varphi\left(x_{i}\right)$ in terms of these generators and form a "matrix". Then use the adjoint of this "matrix".
(2) Using the previous exercise prove a version of chinese remainder theorem, that is if I is an ideal of R so that $I \cdot M=M$; where M is a finitely generated R-module, then there exists some $x \in R$ so that $x \equiv 1(\bmod I)$ so that $\chi M=0$.
(3) (Splitting exact sequences) Suppose that there are two exact sequences of the form :

$$
M^{\prime \prime} \rightarrow M \rightarrow M^{\prime} \rightarrow 0 \quad \text { and } \quad M^{\prime} \rightarrow \mathrm{N} \rightarrow \mathrm{~N}^{\prime \prime}
$$

Show that one can obtain the following exact sequence :

$$
\mathrm{M}^{\prime \prime} \rightarrow \mathrm{M} \rightarrow \mathrm{~N} \rightarrow \mathrm{~N}^{\prime \prime}
$$

(4) (Gluing exact sequences) Say we are given an exact sequence of the form :

$$
M^{\prime \prime} \xrightarrow{f} M \xrightarrow{g} N \xrightarrow{h} N^{\prime \prime} .
$$

Show that the sequences

$$
M^{\prime \prime} \xrightarrow{\mathrm{f}} \mathrm{M} \xrightarrow{\mathrm{~g}} \mathrm{~K} \rightarrow 0 \quad \text { and } \quad \mathrm{K} \xrightarrow{\iota} \mathrm{~N} \xrightarrow{\mathrm{~h}} \mathrm{~N}^{\prime \prime}
$$

where $K=\operatorname{im}(g)=\operatorname{ker}(h)$.
(5) (Splitting lemma) Let $0 \rightarrow M^{\prime \prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime} \rightarrow 0$ be a short exact sequence. Show that the following statements are equivalent :

- $M \cong M^{\prime \prime} \oplus M^{\prime}$
- f has a left inverse, that is, there is an R-module homomorphism $\varphi: M \rightarrow M^{\prime \prime}$ so that $\varphi \circ f=i d_{M^{\prime \prime}}$
-g has a right inverse, that is, there is an R-module homomorphism $\psi: M^{\prime} \rightarrow M$ so that $\mathrm{f} \circ \psi=\mathrm{id}_{M^{\prime}}$
If one of the above equivalent conditions hold, then the corresponding sequence is called split exact.
(6) Fix a field K. Show that every short exact sequence $0 \rightarrow V^{\prime \prime} \rightarrow V \rightarrow V^{\prime} \rightarrow 0$ of K-vector spaces is split exact.
(7) Given the fact that the sequence :

$$
0 \rightarrow \mathbf{Z} \xrightarrow{\mathrm{f}} \mathbf{Z} \oplus \mathbf{Z} \rightarrow \mathbf{Z} \oplus(\mathbf{Z} / \mathbf{2 Z}) \rightarrow 0
$$

is exact, what can you say about the Z-module homomorphism f ?

