MATH 504 EXERCISES 2

A. ZEYTİN

Unless otherwise stated G is a group.

- (1) Show that the intersection of any collection (finite or infinite, countable or uncountable) of subgroups of a group G is again a subgroup. Deduce that for an arbitrary non-empty subset $X \subset G$ the set of all subgroups containing X, denoted $\langle X \rangle$ is a subgroup of G called the subgroup generated by X. Deduce further that if X is itself a subgroup, then the subgroup generated by X is itself, that is show that $\langle X \rangle = X$ when X is a subgroup.
 - ► Determine the subgroup generated by $X = \{(12), (13)\}$ in \mathfrak{S}_3 .
 - ► Determine the subgroup generated by $X = \{(12), (13)\}$ in \mathfrak{S}_4 .
 - ► If $X = \{g\}$, then show that the subgroup $\langle X \rangle = \{g^n \mid n \in \mathbf{Z}\}$. Such subgroups are called *cyclic*. If $G = \langle \{g\} \rangle$ for some $g \in G$ then G is called cyclic.
 - Give an example of a finite cyclic subgroup.
 - ► Give an example of an infinite cyclic subgroup.
 - ► Let G be a group and $a, b \in G$ be two elements. Try to list all the elements of the subgroup $\langle \{a, b\} \rangle$ if $a^2 = e = b^3$.
 - ► Let G be a group and $a, b \in G$ be two elements. Try to list all the elements of the subgroup $\langle \{a, b\} \rangle$ if $a^2 = e = b^3$ and ab = ba.

(2) Find a relation which is

- ▶ reflexive but neither symmetric nor transitive.
- ► symmetric but neither reflexive nor transitive.
- ► transitive but neither symmetric nor reflexive.
- ▶ both symmetric and reflexive but not transitive.
- ▶ both reflexive and transitive but not symmetric.
- ▶ both symmetric and transitive but not reflexive.

(3) On $\mathbf{Z} \setminus \{0\}$, we define

$$\mathbf{R} = \{(\mathbf{m}, \mathbf{n}) \in (\mathbf{Z} \setminus \{\mathbf{0}\})^2 \mid \mathbf{mn} > \mathbf{0}\}.$$

- ► Sow that R is an equivalence relation.
- Determine all the equivalence classes and the partition of $\mathbf{Z} \setminus \{0\}$ determined by them.

(4) On \mathbb{R}^2 , we define

$$(\mathfrak{p},\mathfrak{q})\sim_{\mathsf{R}} (\mathfrak{s},\mathfrak{t}):\Leftrightarrow \frac{\mathfrak{q}-\mathfrak{t}}{\mathfrak{s}-\mathfrak{t}}=2.$$

- Show that \sim_{R} is an equivalence relation.
- ► Give a geometric description of equivalence classes.
- (5) Let X be a non-empty set and T be a fixed subset of X. On $\mathcal{P}(X)$ we define :

$$A \sim_{\mathsf{R}} B : \Leftrightarrow A \cap \mathsf{T} = B \cap \mathsf{T}.$$

- Show in general that \sim_{R} is an equivalence relation.
- Determine all the equivalence classes when $T = \emptyset$.
- Determine all the equivalence classes when T = X.
- Set X = {1,2,3,4} and T = {1,3}. Describe the equivalence classes and deduce the corresponding partition of *P*(X).

(6) Decide which of the following relations of \mathbf{R}^2 is an equivalence relation :

- $(x_1, y_1) \sim_R (x_2, y_2) :\Leftrightarrow x_1^2 x_2^2 = y_1 y_2$
- $(x_1, y_1) \sim_{\mathbb{R}} (x_2, y_2) : \Leftrightarrow x_1^2 x_2^2 = y_1^2 y_2^2$
- $(x_1, y_1) \sim_R (x_2, y_2) :\Leftrightarrow x_1 + x_2 = y_1 + y_2$
- $\blacktriangleright (x_1, y_1) \sim_{\mathsf{R}} (x_2, y_2) :\Leftrightarrow x_1 y_1 = x_2 y_2$

(7) Let φ : $G \to G'$ be a group homomorphism and let e' denote the identity element of G'.

- Show that the set ker(φ) := {g ∈ G: φ(g) = e'} is a normal subgroup of G. This subgroup is called the kernel of φ.
- ► Show that the set $im(()\phi) := \{g' \in G': g' = \phi(g) \text{ for some } g \in G\}$ is a subgroup of G'. This subgroup is called the image of ϕ .
- Show by an explicit example that $im((\phi))$ need not be a normal subgroup.
- (8) Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?

$$\varphi \colon \mathbf{R}^{\times} \to \mathrm{GL}(2, \mathbf{R})$$
$$x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}$$
$$\varphi \colon \mathbf{R} \to \mathrm{GL}(2, \mathbf{R})$$
$$x \mapsto \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$$
$$\varphi \colon \mathrm{GL}(2, \mathbf{R}) \to \mathbf{R}$$
$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \mapsto p + s$$
$$\varphi \colon \mathrm{GL}(2, \mathbf{R}) \to \mathbf{R}$$
$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \mapsto p + s$$
$$\varphi \colon \mathrm{GL}(2, \mathbf{R}) \to \mathbf{R}$$
$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \mapsto q + r$$
$$\varphi \colon \mathbf{Z} \to \mathbf{Z}$$
$$n \mapsto 504n$$

(9) Let $n \in N$ be an integer with n > 1. Show that if G is an abelian group, then the map

$$\begin{array}{l} \phi_n\colon G\to G\\ g\mapsto g^n\end{array}$$

is a group homomorphism. Show further that φ_n need not be a group homomorphism in general.

- (10) Show that if G is an abelian group and $\varphi: G \to G'$ is a group homomorphism, then $im(()\varphi)$ is an abelian subgroup of G'.
- (11) Let G be a finite group, that is $|G| = n \in N$. Show that there is an integer m so that $g^m = e$ for all $g \in G$. Show that one may take m = n, that is, show that for all $g \in G$ we have $g^{|G|} = e$. Give an example where one may choose m < |G|.
- (12) Let G be a group, H be a subgroup and N be a normal subgroup of G. Show that $NH = \{nh \in G \mid n \in N, h \in H\}$ is a subgroup. Show, by an example, that this fails when N is not normal.
- (13) Show that the intersection of two normal subgroups is again a normal subgroup.
- (14) Let φ : $G \to G'$ be a group homomorphism. Show that φ is one-to-one if and only if ker(φ) = {e}.
- (15) Let φ : $G \to G'$ be a group homomorphism. Define $g_1 \sim g_2$ when $\varphi(g_1) = \varphi(g_2)$.
 - ▶ Show that the mentioned relation is an equivalence relation.
 - Describe the equivalence classes of this relation.