MATH 504

EXERCISES 2

A. ZEYTİN

Unless otherwise stated G is a group.
(1) Show that the intersection of any collection (finite or infinite, countable or uncountable) of subgroups of a group G is again a subgroup. Deduce that for an arbitrary non-empty subset $X \subset G$ the set of all subgroups containing X, denoted $\langle X\rangle$ is a subgroup of G called the subgroup generated by X. Deduce further that if X is itself a subgroup, then the subgroup generated by X is itself, that is show that $\langle X\rangle=X$ when X is a subgroup.

- Determine the subgroup generated by $X=\{(12),(13)\}$ in \mathfrak{S}_{3}.
- Determine the subgroup generated by $X=\{(12),(13)\}$ in \mathfrak{S}_{4}.
- If $X=\{\mathrm{g}\}$, then show that the subgroup $\langle X\rangle=\left\{\mathrm{g}^{n} \mid \mathrm{n} \in \mathbf{Z}\right\}$. Such subgroups are called cyclic. If $G=\langle\{\mathrm{g}\}\rangle$ for some $g \in G$ then G is called cyclic.
- Give an example of a finite cyclic subgroup.
- Give an example of an infinite cyclic subgroup.
- Let G be a group and $a, b \in G$ be two elements. Try to list all the elements of the subgroup $\langle\{a, b\}\rangle$ if $a^{2}=e=b^{3}$.
- Let G be a group and $a, b \in G$ be two elements. Try to list all the elements of the subgroup $\langle\{a, b\}\rangle$ if $a^{2}=e=b^{3}$ and $a b=b a$.
(2) Find a relation which is
- reflexive but neither symmetric nor transitive.
- symmetric but neither reflexive nor transitive.
- transitive but neither symmetric nor reflexive.
- both symmetric and reflexive but not transitive.
- both reflexive and transitive but not symmetric.
- both symmetric and transitive but not reflexive.
(3) On $\mathbf{Z} \backslash\{0\}$, we define

$$
R=\left\{(m, n) \in(\mathbf{Z} \backslash\{0\})^{2} \mid m n>0\right\}
$$

- Sow that R is an equivalence relation.
- Determine all the equivalence classes and the partition of $\mathbf{Z} \backslash\{0\}$ determined by them.
(4) On \mathbf{R}^{2}, we define

$$
(p, q) \sim_{R}(s, t): \Leftrightarrow \frac{q-t}{s-t}=2
$$

- Show that \sim_{R} is an equivalence relation.
- Give a geometric description of equivalence classes.
(5) Let X be a non-empty set and T be a fixed subset of X. On $\mathcal{P}(X)$ we define :

$$
A \sim_{R} B: \Leftrightarrow A \cap T=B \cap T .
$$

- Show in general that \sim_{R} is an equivalence relation.
- Determine all the equivalence classes when $T=\emptyset$.
- Determine all the equivalence classes when $T=X$.
- Set $X=\{1,2,3,4\}$ and $T=\{1,3\}$. Describe the equivalence classes and deduce the corresponding partition of $\mathcal{P}(\mathrm{X})$.
(6) Decide which of the following relations of \mathbf{R}^{2} is an equivalence relation:
- $\left(x_{1}, y_{1}\right) \sim_{R}\left(x_{2}, y_{2}\right): \Leftrightarrow x_{1}^{2}-x_{2}^{2}=y_{1}-y_{2}$
- $\left(x_{1}, y_{1}\right) \sim_{R}\left(x_{2}, y_{2}\right): \Leftrightarrow x_{1}^{2}-x_{2}^{2}=y_{1}^{2}-y_{2}^{2}$
- $\left(x_{1}, y_{1}\right) \sim_{R}\left(x_{2}, y_{2}\right): \Leftrightarrow x_{1}+x_{2}=y_{1}+y_{2}$
$\rightarrow\left(x_{1}, y_{1}\right) \sim_{R}\left(x_{2}, y_{2}\right): \Leftrightarrow x_{1} y_{1}=x_{2} y_{2}$
(7) Let $\varphi: G \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism and let e^{\prime} denote the identity element of G^{\prime}.
- Show that the set $\operatorname{ker}(\varphi):=\left\{g \in G: \varphi(\mathrm{g})=e^{\prime}\right\}$ is a normal subgroup of G. This subgroup is called the kernel of φ.
- Show that the set $\operatorname{im}(() \varphi):=\left\{g^{\prime} \in \mathrm{G}^{\prime}: \mathrm{g}^{\prime}=\varphi(\mathrm{g})\right.$ for some $\left.\mathrm{g} \in \mathrm{G}\right\}$ is a subgroup of G^{\prime}. This subgroup is called the image of φ.
- Show by an explicit example that $\operatorname{im}((\varphi))$ need not be a normal subgroup.
(8) Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?
-

$$
\begin{aligned}
\varphi: \mathbf{R}^{\times} & \rightarrow \mathrm{GL}(2, \mathbf{R}) \\
x & \mapsto\left(\begin{array}{ll}
1 & 0 \\
0 & x
\end{array}\right) \\
\varphi: \mathbf{R} & \rightarrow \mathrm{GL}(2, \mathbf{R}) \\
x & \mapsto\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)
\end{aligned}
$$

$$
\varphi: \mathrm{GL}(2, \mathbf{R}) \rightarrow \mathbf{R}
$$

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \mapsto p+s
$$

$$
\varphi: \mathrm{GL}(2, \mathbf{R}) \rightarrow \mathbf{R}
$$

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \mapsto q+r
$$

$$
\varphi: \mathbf{Z} \rightarrow \mathbf{Z}
$$

$$
n \mapsto 504 n
$$

(9) Let $\mathrm{n} \in \mathrm{N}$ be an integer with $\mathrm{n}>1$. Show that if G is an abelian group, then the map

$$
\begin{aligned}
& \varphi_{\mathrm{n}}: \mathrm{G} \rightarrow \mathrm{G} \\
& \mathrm{~g} \mapsto \mathrm{~g}^{\mathrm{n}}
\end{aligned}
$$

is a group homomorphism. Show further that φ_{n} need not be a group homomorphism in general.
(10) Show that if G is an abelian group and $\varphi: G \rightarrow G^{\prime}$ is a group homomorphism, then $\operatorname{im}(() \varphi)$ is an abelian subgroup of G^{\prime}.
(11) Let G be a finite group, that is $|\mathrm{G}|=\mathrm{n} \in \mathrm{N}$. Show that there is an integer m so that $\mathrm{g}^{\mathrm{m}}=e$ for all $\mathrm{g} \in \mathrm{G}$. Show that one may take $\mathrm{m}=\mathrm{n}$, that is, show that for all $\mathrm{g} \in \mathrm{G}$ we have $\mathrm{g}^{|\mathrm{G}|}=e$. Give an example where one may choose $m<|G|$.
(12) Let G be a group, H be a subgroup and N be a normal subgroup of G. Show that $N H=\{n h \in G \mid n \in N, h \in H\}$ is a subgroup. Show, by an example, that this fails when N is not normal.
(13) Show that the intersection of two normal subgroups is again a normal subgroup.
(14) Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Show that φ is one-to-one if and only if $\operatorname{ker}(\varphi)=\{e\}$.
(15) Let $\varphi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism. Define $\mathrm{g}_{1} \sim \mathrm{~g}_{2}$ when $\varphi\left(\mathrm{g}_{1}\right)=\varphi\left(\mathrm{g}_{2}\right)$.

- Show that the mentioned relation is an equivalence relation.
- Describe the equivalence classes of this relation.

