MATH 504

EXERCISES 3

A. ZEYTİN

Unless otherwise stated G and G^{\prime} are groups.
(1) Show that if G is a cyclic group, that is $G=\langle g\rangle$ for some $g \in G$, then for any group G^{\prime}, any homomorphism $\varphi: G \rightarrow G^{\prime}$ is determined by $\varphi(g)$. More generally, show that if G is a group generated by $g_{1}, g_{2}, \ldots, g_{n}$ then any homomorphism $\varphi: G \rightarrow G^{\prime}$ is determined by $\varphi\left(g_{1}\right), \varphi\left(g_{2}\right) \ldots, \varphi\left(g_{n}\right)$.
(2) Determine all homomorphisms from:
$-\mathbf{Z} \rightarrow \mathbf{Z} / 7 \mathbf{Z}$

- $\mathbf{Z} / 7 \mathbf{Z} \rightarrow \mathbf{Z} / 7 \mathbf{Z}$
- Z/8 $\rightarrow \mathbf{Z} / 7 \mathbf{Z}$
- Z/14Z $\rightarrow \mathbf{Z} / 7 \mathbf{Z}$
- $\mathbf{Z} / 7 \mathbf{Z} \rightarrow \mathbf{Z} / 14 \mathbf{Z}$
$-\mathfrak{S}_{3} \rightarrow \mathbf{Z}$
- $\mathrm{Z} \rightarrow \mathfrak{S}_{3}$
(3) Let m and n be two relatively prime numbers. Show that there is no non-trivial group homomorphism from \mathbf{Z} / mZ to \mathbf{Z} / nZ.
(4) Let $\varphi: G \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism.
- Show that for any $g \in G$ the order of $\varphi(g)$ divides the order of g, that is ord $(\varphi(g)) \operatorname{lord}(g)$.
- Show that if φ is an isomorphism then its inverse $\varphi^{-1}: G^{\prime} \rightarrow G$ is also an isomorphism.
- Deduce that if φ is an isomorphism, then $\operatorname{ord}(\mathrm{g})=\operatorname{ord}(\varphi(\mathrm{g}))$.
(5) An automorphism of a group G is defined as an isomorphism $\varphi: G \rightarrow G$. Determine all automorphisms of the following groups :
- Z/4Z
- Z/5Z
- Z/6Z
(6) Let $G=\mathfrak{S}_{n}$ be the symmetric group on $\{1,2, \ldots, n\}$.
- A transposition is a cycle of length 2 , i.e. elements of the form (a, b) for $a, b \in\{1,2, \ldots, n\}$. Show that \mathfrak{S}_{n} is generated by transpositions, that is any $\sigma \in \mathfrak{S}_{n}$ can be written as a product of transpositions.
- Notice that writing an element as a product of transpositions is not unique. However, for any element $\sigma \in \mathfrak{S}_{n}$ whenever

$$
\begin{aligned}
\sigma & =\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \ldots\left(a_{k}, b_{k}\right) \\
& =\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \ldots\left(a_{l}, b_{l}\right)
\end{aligned}
$$

show that $(-1)^{k}=(-1)^{l}$; that is the parity of k (or $\left.l\right)$ is well-defined.

- Deduce that the map sign: $\mathfrak{S}_{n} \rightarrow\{ \pm 1\}$ sending σ to $(-1)^{k}$; where k is the number of transpositions used in writing σ as their product is a group homomorphism.
- Define A_{n} to be ker(sign), that is A_{n} is the subgroup of even permutations. Deduce that A_{n} is a normal subgroup of \mathfrak{S}_{n}
(7) Let G be a group, H and K be subgroups of G .
- Show that $H \times K=\{(h, k) \mid h \in H, k \in K\}$ is a group under componentwise multiplication, that is $(h, k) *$ $\left(h^{\prime}, k^{\prime}\right)=\left(h h^{\prime}, k k^{\prime}\right)$.
- Show that the subset $A=\{(h, e) \mid h \in H\}$ is a normal subgroup of $H \times K$.
- Show that the subset $B=\{(e, k) \mid k \in K\}$ is a normal subgroup of $H \times K$.
- Find a group G^{\prime} and establish a homomorphism whose kernel is A. Use first isomorphism theorem to deduce that $K \cong(H \times K) / A$
- Find a group $\mathrm{G}^{\prime \prime}$ and establish a homomorphism whose kernel is B. Use first isomorphism theorem to deduce that $\mathrm{H} \cong(\mathrm{H} \times \mathrm{K}) / \mathrm{B}$
(8) Let $\varphi: G \rightarrow G^{\prime}$ be a group epimorphism and N be a normal subgroup of G. Show that $\varphi(N)$ is a normal subgroup of G^{\prime}. Show by an example that the claim fails to hold if we do not assume φ to be an epimorphism.
(9) Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism and N^{\prime} be a normal subgroup of G^{\prime}. Show that $\varphi^{-1}\left(N^{\prime}\right)$ is a normal subgroup of G.
(10) Let G be a group and N and N^{\prime} be two normal subgroups of G with the property that $N \cap N^{\prime}=\{e\}$. Show that for any $n \in N$ and $n^{\prime} \in N^{\prime}, n n^{\prime}=n^{\prime} n$.
(11) Show that $\mathrm{GL}(2, \mathbf{R}) / \mathrm{SL}_{2, \mathbf{R}}(=) \mathbf{R}^{\times}$using first isomorphism theorem.
(12) In this exercise, we will prove the second isomorphism theorem. Let G be a group and let N and N^{\prime} be two normal subgroups of G .
- Show that $\mathrm{NN}^{\prime}:=\left\{\mathrm{nn}^{\prime} \in \mathrm{G} \mid \mathrm{n} \in \mathrm{N}\right.$, and $\left.\mathrm{n}^{\prime} \in \mathrm{N}^{\prime}\right\}$ is a subgroup of G.
- Show that N^{\prime} is a normal subgroup of NN^{\prime}.
- Show that $\mathrm{N} \cap \mathrm{N}^{\prime}$ is a normal subgroup of N .
- Finally, show that $\mathrm{N} / \mathrm{N} \cap \mathrm{N}^{\prime} \cong \mathrm{NN}^{\prime} / \mathrm{N}^{\prime}$ using first isomorphism theorem. (Hint: Define a homomorphism from N to $\mathrm{NN}^{\prime} / \mathrm{N}^{\prime}$ whose kernel is $\mathrm{N} \cap \mathrm{N}^{\prime}$.)

