MATH 504 EXERCISES 4

A. ZEYTİN

Unless otherwise stated G and G' are groups and X is a non-empty set admitting an action of G.

- (1) For each item in the following list, show that the map defines a group action of G on X, determine orbits, the set X/G, the stabilizers and verify orbit stabilizer theorem :
 - $G = (\{\pm 1\}, \cdot), X = \mathbf{R},$

•:
$$G \times X \to X$$

 $(g, x) \mapsto g \bullet x := g \cdot x$

 $\bullet G = \mathbf{Z}^2, X = \mathbf{R}^2,$

•:
$$G \times X \to X$$

 $((\mathfrak{n}_1, \mathfrak{n}_2), (x, y)) \mapsto g \bullet x := (\mathfrak{n}_1 + x, \mathfrak{n}_2 + y)$

• $G = \mathfrak{S}_3, X = \mathfrak{S}_3,$

•:
$$G \times X \to X$$

 $(g, x) \mapsto g \bullet x := g^{-1} \circ x \circ g$

• $G = \mathfrak{S}_3$, $X = \{$ the set of subgroups of $\mathfrak{S}_3 \}$,

•:
$$G \times X \to X$$

 $(g, H) \mapsto g \bullet H := g^{-1}Hg$

• $G = \mathfrak{S}_4, X = \mathfrak{S}_4,$

•:
$$G \times X \to X$$

(q, x) \mapsto q • x := q o x

- (2) Let X be a non-empty set admitting an action of a group G.
 - Show that the set $Fix(G) := \{g \in G \mid g \bullet x = x \text{ for all} x \in X\}$ is a subgroup of G
 - Show that $Fix(G) = \bigcap_{x \in X} Stab(x)$.

(3) Consider the map :

•: GL(2, **R**) × **R**² → **R**²
(
$$\gamma$$
, (x , y)) $\mapsto \gamma \bullet (x, y) := \gamma \cdot \begin{pmatrix} x \\ y \end{pmatrix}$

- ▶ Show that the above map defines an action of GL(2, **R**) on **R**².
- What is the orbit of (1, 0)?
- ► What is the stabilizer of (1,0)?
- (4) Let G be a finite group. If G acts on X transitively¹ then we have

$$\sum_{g \in G} \operatorname{Fix}(g) = |G|;$$

where $Fix(g) := \{x \in X \mid g \bullet x = x\}.$

(5) We say that the action of G on X is *doubly transitive* if given any $x_1, x_2 \in X$ and $y_1, y_2 \in X$, there is an element $g \in G$ so that $y_1 = g \bullet x_1$ and $y_2 = g \bullet x_2$.

¹Recall that a group action is transitive if |X/G| = 1, i.e. the action has only one orbit, or equivalently, for any $x, y \in X$ there is a $g \in G$ so that $y = g \bullet x$.

Show that the following map defines an action (called the diagonal or componentwise action) of G on $Y = X \times X \setminus \{(x, x) | x \in X\}$:

•:
$$G \times Y \to Y$$

 $(g, (x_1, x_2)) \mapsto (g \bullet x_1, g \bullet x_2)$

- ► Show that an action is doubly transitive if and only if G the above action of G on Y is transitive.
- (6) Let G be a group and H a subgroup of G. Consider the action of G on X = G/H by multiplication from left.
 - ► Show that this action is transitive.
 - Show that the kernel of the action, that is ker(π) where π : G $\rightarrow \mathfrak{S}(G/H)$ is the associated permutation representation, is the largest normal subgroup of G contained in H.
- (7) Let G be a finite group of cardinality n and p be the *smallest* prime number dividing n. Show that if H is a subgroup of G so that |G/H| = p, then H is a normal subgroup. <u>Hint:</u> Take such subgroup H and consider the action of G on G/H. What can you say about the kernel of this action?
- (8) Consider the quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$.
 - Show that Q_8 is isomorphic to a subgroup of \mathfrak{S}_8 . <u>Hint</u>: Find a subgroup H of Q_8 so that the action of Q_8 on Q_8/H has trivial kernel.
 - Show that Q_8 cannot be realized as a subgroup of any \mathfrak{S}_n if $n \leq 7$. <u>Hint</u>: Assume to the contrary that Q_8 is isomorphic to a subgroup of \mathfrak{S}_n , $n \leq 7$. Show that Q_8 then acts on the set $X = \{1, 2, ..., n\}$ and deduce that the stabilizer of any $x \in X$ must contain $\langle -1 \rangle$.
- (9) What does the class equation say about abelian groups?
- (10) Determine each factor in the class equation for following groups :
 - ► $G = \mathfrak{S}_3$
 - $\blacktriangleright \ G = \mathfrak{S}_4$
 - ► $G = D_8$
 - ► G = Q₈

(11) In this exercise, we will determine conjugacy classes in \mathfrak{S}_n .

▶ Let $\sigma = (a_1 \ a_2 \ \dots \ a_k)$ be a cycle in \mathfrak{S}_n and $\tau \in \mathfrak{S}_n$ be an arbitrary element. Show that

 $\tau \sigma \tau^{-1} = (\tau(a_1) \tau(a_2) \dots \tau(a_k))$

- \blacktriangleright Generalize the previous exercise to an arbitrary element of $\mathfrak{S}_n.$
- Deduce that two elements in \mathfrak{S}_n are conjugate if and only if they have the same cycle type²
- Show that the number of conjugacy classes in \mathfrak{S}_n is equal to the number of partitions of \mathfrak{n}^3 .
- (12) Let G be a group of order 2k + 1. Show that if $x \in G \setminus \{e\}$ then x and x^{-1} cannot be conjugate.
- (13) Two subgroups H_1 and H_2 are said to be conjugate in G if there is some $g \in G$ so that $gH_1g^{-1} = H_2$. In this case, we say that H_1 and H_2 are conjugate.
 - ▶ Decide whether the above relation defines an equivalence relation on the set of subgroups of G.
 - Show that the number of conjugates of a subgroup H of G is the index of its centralizer, that is $[G : C_G(H)]$.
- (14) Let p be a prime number and G a group of order pⁿ for some positive integer n. Show that G must have non-trivial center.
- (15) Let G be a group of order p^2 . Show that G is abelian.
- (16)

²Any element σ of \mathfrak{S}_n can be written as a product of disjoint cycles of length n_i , for i = 1, 2, ..., k. The non-decreasing sequence of integers $n_1 \leq n_2 \leq ... \leq n_k$ is called the cycle type of σ .

³A partition of n is a non-decreasing sequence of integers whose sum is n