MATH 504

EXERCISES 4

A. ZEYTİN

Unless otherwise stated G and G^{\prime} are groups and X is a non-empty set admitting an action of G.
(1) For each item in the following list, show that the map defines a group action of G on X, determine orbits, the set X / G, the stabilizers and verify orbit stabilizer theorem :

- $\mathrm{G}=(\{ \pm 1\}, \cdot), \mathrm{X}=\mathbf{R}$,

$$
\begin{aligned}
& \text { - }: G \times X \rightarrow X \\
& (\mathrm{~g}, \mathrm{x}) \mapsto \mathrm{g} \bullet \mathrm{x}:=\mathrm{g} \cdot \mathrm{x}
\end{aligned}
$$

- $\mathrm{G}=\mathrm{Z}^{2}, \mathrm{X}=\mathrm{R}^{2}$,

$$
\begin{aligned}
\bullet: G \times X & \rightarrow X \\
\left(\left(\mathfrak{n}_{1}, \mathrm{n}_{2}\right),(x, y)\right) & \mapsto \mathrm{g} \bullet x:=\left(\mathrm{n}_{1}+x, \mathrm{n}_{2}+y\right)
\end{aligned}
$$

- $\mathfrak{G}=\mathfrak{S}_{3}, X=\mathfrak{S}_{3}$,

$$
\text { -: } \begin{aligned}
G \times X & \rightarrow X \\
(g, x) & \mapsto g \bullet x:=g^{-1} \circ x \circ g
\end{aligned}
$$

- $\mathrm{G}=\mathfrak{S}_{3}, \mathrm{X}=\left\{\right.$ the set of subgroups of $\left.\mathfrak{S}_{3}\right\}$,
$\bullet: G \times X \rightarrow X$

$$
(\mathrm{g}, \mathrm{H}) \mapsto \mathrm{g} \bullet \mathrm{H}:=\mathrm{g}^{-1} \mathrm{Hg}
$$

- $\mathfrak{G}=\mathfrak{S}_{4}, X=\mathfrak{S}_{4}$,

$$
\begin{aligned}
\bullet: G & \times X
\end{aligned} \rightarrow X,
$$

(2) Let X be a non-empty set admitting an action of a group G.

- Show that the set $\operatorname{Fix}(\mathrm{G}):=\{\mathrm{g} \in \mathrm{G} \mid \mathrm{g} \bullet x=x$ for allx $\in X\}$ is a subgroup of G
- Show that $\operatorname{Fix}(\mathrm{G})=\cap_{x \in X} \operatorname{Stab}(x)$.
(3) Consider the map :

$$
\bullet: \mathrm{GL}(2, \mathbf{R}) \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}
$$

$$
(\gamma,(x, y)) \mapsto \gamma \bullet(x, y):=\gamma \cdot\binom{x}{y}
$$

- Show that the above map defines an action of $\operatorname{GL}(2, \mathbf{R})$ on \mathbf{R}^{2}.
-What is the orbit of $(1,0)$?
- What is the stabilizer of $(1,0)$?
(4) Let G be a finite group. If G acts on X transitively ${ }^{1}$ then we have

$$
\sum_{g \in G} \operatorname{Fix}(g)=|G| ;
$$

where $\operatorname{Fix}(\mathrm{g}):=\{x \in \mathrm{X\mid g} \bullet x=x\}$.
(5) We say that the action of G on X is doubly transitive if given any $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in X$, there is an element $\mathrm{g} \in \mathrm{G}$ so that $\mathrm{y}_{1}=\mathrm{g} \bullet \mathrm{x}_{1}$ and $\mathrm{y}_{2}=\mathrm{g} \bullet \mathrm{x}_{2}$.

[^0]- Show that the following map defines an action (called the diagonal or componentwise action) of G on $Y=X \times X \backslash\{(x, x) \mid x \in X\}:$

$$
\begin{aligned}
\bullet: G \times Y & \rightarrow Y \\
\left(g,\left(x_{1}, x_{2}\right)\right) & \mapsto\left(g \bullet x_{1}, g \bullet x_{2}\right)
\end{aligned}
$$

- Show that an action is doubly transitive if and only if G the above action of G on Y is transitive.
(6) Let G be a group and H a subgroup of G. Consider the action of G on $X=G / H$ by multiplication from left.
- Show that this action is transitive.
- Show that the kernel of the action, that is $\operatorname{ker}(\pi)$ where $\pi: \mathrm{G} \rightarrow \mathfrak{S}(\mathrm{G} / \mathrm{H})$ is the associated permutation representation, is the largest normal subgroup of G contained in H .
(7) Let G be a finite group of cardinality n and p be the smallest prime number dividing n . Show that if H is a subgroup of G so that $|\mathrm{G} / \mathrm{H}|=\mathrm{p}$, then H is a normal subgroup. Hint: Take such subgroup H and consider the action of G on G / H. What can you say about the kernel of this action?
(8) Consider the quaternion group $\mathrm{Q}_{8}=\{ \pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$.
- Show that Q_{8} is isomorphic to a subgroup of \mathfrak{S}_{8}. Hint: Find a subgroup H of Q_{8} so that the action of Q_{8} on Q8/H has trivial kernel.
- Show that Q_{8} cannot be realized as a subgroup of any $\mathfrak{S}_{\mathrm{n}}$ if $\mathrm{n} \leq 7$. Hint: Assume to the contrary that Q_{8} is isomorphic to a subgroup of $\mathfrak{S}_{n}, n \leq 7$. Show that Q_{8} then acts on the set $X=\{1,2, \ldots, n\}$ and deduce that the stabilizer of any $x \in X$ must contain $\langle-1\rangle$.
(9) What does the class equation say about abelian groups?
(10) Determine each factor in the class equation for following groups:
- $\mathrm{G}=\mathfrak{S}_{3}$
- $\mathrm{G}=\mathfrak{S}_{4}$
- $\mathrm{G}=\mathrm{D}_{8}$
- $\mathrm{G}=\mathrm{Q}_{8}$
(11) In this exercise, we will determine conjugacy classes in \mathfrak{S}_{n}.
- Let $\sigma=\left(a_{1} a_{2} \ldots a_{k}\right)$ be a cycle in \mathfrak{S}_{n} and $\tau \in \mathfrak{S}_{\mathfrak{n}}$ be an arbitrary element. Show that

$$
\tau \sigma \tau^{-1}=\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \ldots \tau\left(a_{k}\right)\right)
$$

- Generalize the previous exercise to an arbitrary element of $\mathfrak{S}_{\mathfrak{n}}$.
- Deduce that two elements in $\mathfrak{S}_{\mathfrak{n}}$ are conjugate if and only if they have the same cycle type ${ }^{2}$
- Show that the number of conjugacy classes in $\mathfrak{S}_{\mathfrak{n}}$ is equal to the number of partitions of n^{3}.
(12) Let G be a group of order $2 k+1$. Show that if $x \in G \backslash\{e\}$ then x and x^{-1} cannot be conjugate.
(13) Two subgroups H_{1} and H_{2} are said to be conjugate in G if there is some $g \in G$ so that $g H_{1} g^{-1}=H_{2}$. In this case, we say that H_{1} and H_{2} are conjugate.
- Decide whether the above relation defines an equivalence relation on the set of subgroups of G .
- Show that the number of conjugates of a subgroup H of G is the index of its centralizer, that is $\left[G: C_{G}(H)\right]$.
(14) Let p be a prime number and G a group of order p^{n} for some positive integer n. Show that G must have non-trivial center.
(15) Let G be a group of order p^{2}. Show that G is abelian.

[^1]
[^0]: ${ }^{1}$ Recall that a group action is transitive if $|X / G|=1$, i.e. the action has only one orbit, or equivalently, for any $x, y \in X$ there is a $g \in G$ so that $\mathrm{y}=\mathrm{g} \bullet \chi$.

[^1]: ${ }^{2}$ Any element σ of \mathfrak{S}_{n} can be written as a product of disjoint cycles of length $n_{\mathfrak{i}}$, for $\mathfrak{i}=1,2, \ldots k$. The non-decreasing sequence of integers $n_{1} \leq n_{2} \leq \ldots \leq n_{k}$ is called the cycle type of σ.
 ${ }^{3}$ A partition of n is a non-decreasing sequence of integers whose sum is n

