MATH 504

EXERCISES 6

A. ZEYTİN

Unless otherwise stated G and G^{\prime} are groups and X is a non-empty set admitting an action of G.
(1) Determine n_{2} in \mathfrak{S}_{5}
(2) Show that if G is a group of order 80 then either $\mathrm{n}_{5}=1$ or $\mathrm{n}_{2}=1$.
(3) Let G be a non-cyclic group of order 57 . Determine the number of elements of order 3 in G .
(4) Show that a group of order 45 is necessarily abelian.
(5) Show that groups of following orders are not simple :

- 132
- 200
- 462
- 1365
- 2907
- 6545
- $2^{4} 5^{6}$
(6) Let G be a group of order 105 . Show that if $n_{3}=1$ then G is abelian.
(7) Let G be a group of order 231. Show that
- G has only one Sylow 7 and only one Sylow 11 subgroup.
- G has a cyclic subgroup of order 33.
- Let P be the Sylow 11 subgroup of G. Show that $P \leq Z(G)$. Hint: As we did in lecture, establish a homomorphism between the automorphism group of a Sylow 11 subgroup P, i.e. $\operatorname{Aut}(P)$, and G.
(8) Let G be a group with $|\mathrm{G}|=315$ and $\mathrm{n}_{3}=1$.
- Show that if $\{P\}=\operatorname{Syl}_{3}(G)$, then $P \leq Z(G)$. Hint: As we did in lecture, establish a homomorphism between the automorphism group of the Sylow 3 subgroup P, i.e. $\operatorname{Aut}(\mathrm{P})$, and G.
- Deduce that G is abelian.
(9) Determine the number of elements of order 7 in a group G of order 168 , assuming G is simple. Give an example of a non-simple group of order 168.
(10) Let p be a prime number and let $n \in\left\{p, p+1, \ldots, p^{2}-1\right\}$. Find an element H of $\operatorname{Syl}_{\mathfrak{p}}\left(\mathfrak{S}_{\mathfrak{n}}\right)$. Is H abelian?
(11) Let G be a finite group and assume that for each prime number p dividing $|G| n_{p}=1$. Set $H_{p} \in \operatorname{Syl}_{p}(G)$
- Show that for distinct prime numbers p and q if $x \in H_{p}$ and $y \in H_{q}$ then $x y=y x$.
- Deduce that if p_{1}, \ldots, p_{k} is the list of prime numbers dividing $|G|$, then $G \cong H_{p_{1}} \times H_{p_{2}} \times \cdots H_{p_{k}}$.
- Deduce that if G is a group of order 99 then $\mathrm{G} \cong \mathrm{H}_{9} \times \mathrm{H}_{11}$.
- Find all subgroups of order 99.

