MATH 504 EXERCISES 6

A. ZEYTİN

Unless otherwise stated G and G' are groups and X is a non-empty set admitting an action of G.

- (1) Determine n_2 in \mathfrak{S}_5
- (2) Show that if G is a group of order 80 then either $n_5 = 1$ or $n_2 = 1$.
- (3) Let G be a non-cyclic group of order 57. Determine the number of elements of order 3 in G.
- (4) Show that a group of order 45 is necessarily abelian.
- (5) Show that groups of following orders are not simple :
 - ▶ 132
 - ▶ 200
 - ▶ 462
 - ▶ 1365
 - ▶ 2907
 - ▶ 6545
 - ► 2⁴5⁶
- (6) Let G be a group of order 105. Show that if $n_3 = 1$ then G is abelian.
- (7) Let G be a group of order 231. Show that
 - ▶ G has only one Sylow 7 and only one Sylow 11 subgroup.
 - ► G has a cyclic subgroup of order 33.
 - ► Let P be the Sylow 11 subgroup of G. Show that $P \le Z(G)$. <u>Hint:</u> As we did in lecture, establish a homomorphism between the automorphism group of a Sylow 11 subgroup P, i.e. Aut(P), and G.
- (8) Let G be a group with |G| = 315 and $n_3 = 1$.
 - Show that if $\{P\} = Syl_3(G)$, then $P \le Z(G)$. <u>Hint:</u> As we did in lecture, establish a homomorphism between the automorphism group of the Sylow 3 subgroup P, i.e. Aut(P), and G.
 - ► Deduce that G is abelian.
- (9) Determine the number of elements of order 7 in a group G of order 168, assuming G is simple. Give an example of a non-simple group of order 168.
- (10) Let p be a prime number and let $n \in \{p, p + 1, ..., p^2 1\}$. Find an element H of $Syl_p(\mathfrak{S}_n)$. Is H abelian?
- (11) Let G be a finite group and assume that for each prime number p dividing $|G| n_p = 1$. Set $H_p \in Syl_p(G)$
 - Show that for distinct prime numbers p and q if $x \in H_p$ and $y \in H_q$ then xy = yx.
 - ▶ Deduce that if p_1, \ldots, p_k is the list of prime numbers dividing |G|, then $G \cong H_{p_1} \times H_{p_2} \times \cdots \times H_{p_k}$.
 - Deduce that if G is a group of order 99 then $G \cong H_9 \times H_{11}$.
 - ► Find all subgroups of order 99.