MATH 504 EXERCISES 7

A. ZEYTİN

Unless otherwise stated G and G' are groups and X is a non-empty set admitting an action of G.

- (1) Show that for any $i \in \mathbb{Z}_+$, $C_i(G \times G') \cong C_i(G) \times C_i(G')$. Deduce that if G and G' are nilpotent groups then so is $G \times G'$.
- (2) Show that the group given by the presentation

$$\langle a, b, c | a^3 = b^3 = c^4 = acac^{-1} = aba^{-1}bc^{-1}b^{-1} = e \rangle$$

defines the trivial group.

(3) Show that the group given by the presentation

$$(a, b | ab^2 a^{-1} b^3 = ba^2 b^{-1} a^{-3} = e)$$

defines the trivial group.

- (4) Let G be a group. For two elements $a, b \in G$ the element $[a, b] = aba^{-1}b^{-1}$ is called the commutator of a and b.
 - Show, by an example, that the set of commutators, that is $\{[a,b] | a, b \in G\}$ does not form necessarily a subgroup of G.
 - ▶ By G' we denote the subgroup *generated* by the set of commutators : G' = ([a, b] | a, b ∈ G). G' is called the *first derived subgroup* of G. Determine G' for
 - i. G an abelian group,
 - ii. $G = \mathfrak{S}_3$
 - ii. $G = \mathfrak{S}_4$
 - iii. Q8
 - iv. $G = D_{2.4}$
 - ▶ Define inductively the ith *derived subgroup* of G, namely $G^{(i)}$, as $(G^{(i-1)})'$. Notice that $G^{(i+1)} \leq G^{(i)}$. Compute $G^{(i)}$ for each $i \in \mathbb{Z}_+$ for the following subgroups :
 - i. G an abelian group,
 - ii. $G = \mathfrak{S}_3$
 - ii. $G = \mathfrak{S}_4$
 - iii. Q₈
 - iv. $G = D_{2.4}$
 - ► A group is called solvable (or soluble) if G⁽ⁱ⁾ = {e} for some i ∈ Z₊. Determine which of the groups in the above list is solvable.
 - ► Show that any subgroup of a solvable group is solvable.
 - Show that if $\varphi: G \to H$ is a group homomorphism and if G is a solvable group, then $\varphi(G)$ is a solvable group.
 - ► Suppose that G is a group, N is a normal subgroup. Show that if both N and G/N are solvable groups, then G is a solvable group.