Université Galatasaray, Département de Mathématiques Math 504 - Advanced Algebra Quiz 3, 06/12/2021		
Name \& Surname:	ID:	\sum

1. Let R be a commutative ring with identity. An element $r \in R$ is called nilpotent if for some $n \in \mathbf{Z}_{=}$we have $r^{n}=0$. Show that if $r \in R$ is nilpotent, then $1+r$ is a unit in R.
2. Let R be a commutative ring with identity and $R[X]$ denote the ring of polynomials over R. That is :

$$
R[X]=\left\{r(X)=r_{o}+r_{1} X+\ldots+r_{n} X^{n} \mid r_{i} \in R, n \in \mathbf{Z}_{\geq 0}\right\}
$$

i. Show that $r(X)$ is a unit in $R[X]$ if and only if $r(0)$ is a unit in R and r_{1}, \ldots, r_{n} are nilpotent. Hint: Use induction for the if part while showing the nilpotency. Then use the previous exercise.
ii. Show that $r(X)$ is nilpotent if and only if each coefficient, that is $r_{o}, r_{1}, \ldots, r_{n}$ are nilpotent.

