MATH 202 ÉNONCÉS DES EXERCICES 10

A. ZEYTİN

- (1) Calculer les intégrales suivantes

 - \blacktriangleright $\iiint_{-} x^2 + y + xyz dV_{x,y,z}$; où D est la région dans le premier octant bornée par le plan 2x + 3y + 4z = 12
 - $ightharpoonup \int \int \int e^{x+y+z} dV_{x,y,z}$; où D est la région bornée par les plans z=2, x+y+z=1, x+y=1 située dans le
 - $\blacktriangleright \iiint_{D} e^{xyz} dV_{x,y,z}; \text{ où D}$
- (2) Soit U, la région de \mathbb{R}^3 à l'intérieur du tétraèdre dont les sommets sont A = (0,0,0), B = (1,0,0), C = (1,1,0)et D = (1, 1, 1). Calculer $\iiint_U (x^2 + y + yz) dV_{x,y,z}$.
- (3) Écrire un intégral triple pour calculer le volume de la région finie :
 - ▶ dans $x^2 + y^2 = 4$, bornée par z = 0 et y + z = 2
 - ► bornée par $z = 8 (x^2 + y^2)$ et $z = -\sqrt{4x^2 + 4y^2}$
 - dans $x^2 + y^2 = 1$, délimitée par $x^2 + y^2 + z^2 = 1$
 - ▶ délimitée par les surfaces $z = x^2 + y^2$ et $z = 36 3x^2 3y^2$.
 - située entre les plans x=0, y=0, z=0 et $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ en supposant que $a,b,c\in\mathbf{R}_+$. délimitée par le surface d'équation $z=x^2+y^2$ et le plan z=4.

 délimitée par les plans z=2, z=3 x=0, y=0 et le surface $x^2+y^2=z^2$.
- (5) Soit U la région finie de \mathbb{R}^3 délimitée par la surface $y = x^2 + z^2$ et le plan y = 9. Écrire $\iiint_U \sqrt{x^2 + y^2} dV_{x,y,z}$ dans les 6 ordres possibles.
- (6) Soit U la région finie de \mathbb{R}^3 délimitée par la surface $y = x^2 + z^2$ et le plan y = 9. Écrire $\iiint_U \sqrt{x^2 + y^2} dV_{x,y,z}$ dans les 6 ordres possibles.
- (7) Soit U la région finie de \mathbb{R}^3 délimitée par la surface $z=1-y^2$ et les plans x+z=1, z=0, x=0. Écrire $\iiint_{11} 3 dV_{x,y,z}$ dans les 6 ordres possibles.