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Abstract

In this work, we introduce a groupoid, called the class groupoid and
denoted by C G , which generalizes the Ptolemy groupoid constructions
of Penner both in the finite case, i.e. for surfaces of genus g with n
punctures, and the universal case, i.e. the disk. Objects of C G are certain
configurations of cosets of subgroups Γ of the modular group PSL2(Z).
C G has a sub-category M, called the modular groupoid, whose objects
are boundaries of Γ ≤ PSL2(Z). Both categories are disconnected. For the
trivial subgroup, the fundamental group of the corresponding connected
component of M turns out to be the universal Teichmüller group (i.e.
Thompson’s group) T . We study C G and M further and prove several
results for subgroups of PSL2(Z) generated by one element.
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1 Introduction

We aim to both unify and generalize the Ptolemy groupoid construction due to
Penner, [9, 10, 11] and study the simplest non-trivial instance of this generaliza-
tion. To this end, the class groupoid, denoted C G , is defined. Objects of C G are
certain configurations, called admissible, of so-called coset pairs (Γ ·M,γ ·M);
where Γ is a subgroup of the modular group PSL2(Z), γ ∈ Γ andM∈ PSL2(Z).
Flips (or HI moves or Whitehead moves) act on the set of such configurations
allowing us to obtain the groupoid structure. Flips leave the genus, the number
of punctures and the number of boundary components homeomorphic to circle
fixed. Therefore, the groupoid is disconnected. We let C GΓ denote the sub-
groupoid of all admissible configurations in C G that are obtained by applying
flips to an admissible configuration for Γ. This subgroupoid turn out to be
connected.

Each admissible configuration gives rise to a bipartite ribbon graph on the
surface Γ\H; where H is the upper half plane. If Γ is of finite index then
the surface is a genus g surface with finitely many punctures and without any
boundary homeomorphic to the circle. In this case C GΓ admits an embedding
of the mapping class group Modn

g of the surface Γ\H.
If the surface Γ\H has at least one boundary component homeomorphic to

the circle then Γ is of infinite index. It turns out that if Γ = {I} then the
groupoid C GΓ has only one object, and hence is a group isomorphic to the
Thompson’s group T of piecewise Möbius transformations of the boundary of
the unit disk with finitely many rational breakpoints, or in other words the
universal mapping class group.

The group C G admits a subgroupoidM, called the modular groupoid, whose
objects are boundary of subgroups of the modular group. Flips induce maps
between the boundaries of these groups. This groupoid is also disconnected. As
above byMΓ we denote corresponding connected component. If Γ is the trivial
subgroup, thenMΓ contains only one object, and is isomorphic to the universal
mapping class group. In fact it turns out that boundaries of modular groups are
closely related to the classical constructions such as ends of trees and continued
fractions.

We carry previous computation to the next step. That is, we consider sub-
groups of the modular group generated by one element. They form a sub-
category called the çark groupoida, Ç . It has seven connected components. In
each case the fundamental group of the connected component turns out to be
closely related to the Thompson’s group F of piecewise linear homeomorphism
of the unit interval having finitely many rational breakpoints.

Plan of the paper is as follows. In Section 2 we develop the appropriate graph
terminology, beginning with the bipartite Farey tree and modular graphs. In
Section 3 we define and investigate ends of the bipartite Farey tree and show
that its ends is equal to the boundary of the unit disk, up to an equivalence
relation. We show that this phenomenon can be treated in terms of continued
fractions. Section 4 is devoted to the class groupoid. We give the definition and
reprove Penner’s theorem. We also define the boundaries of subgroups of the
modular group and discuss its relation to continued fraction map. In Section

aThe terminology is stemming from the one to one correspondence between subgroups
of PSL2(Z) generated by one hyperbolic element and certain bipartite ribbon graphs called
çarks, we refer to [14] for further details.
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5 we introduce the çark groupoid and discuss the fundamental groups of its
connected components. We end the paper by some concluding remarks.

2 Bipartite Farey tree F and modular graphs

In this section, we will define the bipartite Farey tree, denoted by F , and mod-
ular graphs. Then discuss categories of subgroups of the modular group. For
further details on these we refer to [13].

2.1 Modular group action on F .

The modular group is the projective group PSL2(Z) of two by two integral matri-
ces having determinant 1. It is well known that the two elliptic transformations
S(z) = −1/z and L(z) = (z − 1)/z, respectively of orders 2 and 3, freely gener-
ate a group of Möbius transformations which is isomorphic to PSL2(Z). From
PSL2(Z) we construct the bipartite Farey tree F , whose edges are elements of
the modular group. The set of vertices of F are defined as follows:

V (F) = V⊗(F) t V•(F);

where V⊗(F) = {{W,WS} : W ∈ PSL2(Z)} is the set of degree-2 vertices and
V•(F) = {{W,WL,WL2} : W ∈ PSL2(Z)} is the set of degree-3 vertices. Two
vertices v and v′ are joined by an edge if and only if the intersection v ∩ v′ is
non-empty and in this case the edge between the two vertices is the only element
in the intersection. The edges incident to the vertex {W,WL,WL2} ∈ V• are
W, WL and WL2, and these edges inherit a natural cyclic ordering which we fix
for all vertices as (W,WL,WL2). Thus F is an infinite bipartite ribbon graph.
It is a tree since PSL2(Z) is freely generated by S and L. We will always assume
that our words are reduced, i.e. no cancellation occurs within the words. Empty
word will stand for the identity element. For further use, we also introduce the
following notation: given two words W and W ′ in the modular group by W ∩W ′
we denote the longest word (i.e. having the largest number of letters) that is
common both in W and W ′. That is, W ∩W ′ is the longest word so that if we
write W = (W ∩W ′)Wo and W ′ = (W ∩W ′)W ′o, then Wo ∩W ′o is the empty
word.

M ∈ PSL2(Z) acts on F from the left by ribbon graph automorphisms as
follows:

W ∈ E(F) 7→ MW ∈ E(F)

{W,WS} ∈ V⊗(F) 7→ {MW,MWS} ∈ V⊗(F)

{W,WL,WL2} ∈ V•(F) 7→ {MW,MWL,MWL2} ∈ V•(F)

The action is free on E(F) since this is no other than the left-regular action of
PSL2(Z) on itself.

2.2 Modular graphs.

Let Γ be any subgroup of PSL2(Z). Then Γ acts on F from the left and to Γ
we associate a quotient graph Γ\F whose edges and vertices are defined as:

E(Γ\F) = {Γ·W : W ∈ PSL2(Z)}
V (Γ\F) = V⊗(F\Γ) ∪ V•(F\Γ);
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where

V⊗(Γ\F) = {Γ·{W,WS} : W ∈ PSL2(Z)}
V•(Γ\F) = {Γ·{W,WL,WL2} : W ∈ PSL2(Z)}

The incidence relation induced from F gives a well-defined incidence relation
and we obtain a bipartite graph.

Definition 2.1. Let Γ be any subgroup of the modular group. The graph Γ\F
is called a modular graph.

The edges incident to the vertex Γ ·{W,WL,WL2} are Γ ·{W},Γ ·{WL},Γ ·
{WL2}, and these edges inherit a natural cyclic ordering (Γ · {W},Γ · {WL},Γ ·
{WL2}) from the vertex. Hence Γ\F is a ribbon graph possibly with pending (or
terminal) vertices that corresponds to the conjugacy classes of elliptic elements
of Γ.

The set of edges of Γ\F is identified with the set of right-cosets of Γ, so that
the graph Γ\F has [PSL2(Z) : Γ] many edges. For instance, for Γ = PSL2(Z),
the quotient graph PSL2(Z)\F is a graph with one edge, see Figure 1. We call
this graph the modular arc and denote as ⊗−−•.

PSL2(Z)·{I,S}
⊗

PSL2(Z)·I
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PSL2(Z)·{I,L,L2}•

Figure 1: The modular arc.

Note that if Γ1, Γ2 are two distinct isomorphic subgroups of the modular
group, then Γ1\F and Γ2\F are isomorphic as abstract graphs. They are iso-
morphic as ribbon graphs only if Γ1 and Γ2 are conjugates in PSL2(Z), see
[14, Proposition 2.1]. Therefore modular graphs parametrize conjugacy classes
of subgroups of the modular group, whereas the edges of a modular graph
parametrize subgroups in the conjugacy class represented by the modular graph.
In conclusion we get:

Theorem 2.2. There is a 1-1 correspondence between modular graphs with a
base edge (G, e) (modulo ribbon graph isomorphisms of pairs (G, e)) and sub-
groups of the modular group.

Theorem 2.3. There is a 1-1 correspondence between modular graphs with two
base edges (G, e, e′) (modulo ribbon graph isomorphisms of triples (G, e, e′)) and
cosets of subgroups of the modular group.

In this paper we are mostly interested in the case where Γ is a cyclic subgroup
of PSL2(Z). Corresponding modular graphs were named çarks (pronounced:
“chark”) in [14].

Every modular graph may be regarded at the same time as a graph of groups,
[12], in which vertices of type ⊗ are associated with the group Z/2Z, vertices
of type • are associated with the group Z/3Z and edges are associated with
the trivial group. In this setup, every modular graph has a well-defined fun-
damental group, and a universal cover. For instance, the fundamental group
of the modular arc is the modular group itself. Thus any modular graph can
be viewed as a covering of the modular arc and F as the universal cover of
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any modular graph. Therefore, any connected bipartite ribbon graph G, with
V (G) = V⊗(G) t V•(G), such that every ⊗-vertex is of degree 1 or 2 and ev-
ery •-vertex is of degree 1 or 3, is modular. There is a canonical isomorphism
π1(Γ\F ,Γ·I) ' Γ < PSL2(Z), with the canonical choice of Γ·I as a base edge.
In general, subgroups Γ of the modular group (or equivalently the fundamental
groups π1(Γ\F)) are free products of copies of Z, Z/2Z and Z/3Z, see [6].

Every modular graph has a “thickening”, i.e. a punctured topological sur-
face, possibly with boundary, in which it embeds. Given a subgroup Γ of
PSL2(Z), we define the genus of the modular graph (and the genus of Γ) as
the genus of the topological surface into which the graph Γ\F embeds. Punc-
tures and the boundaries which are homeomorphic to the circle are defined in
a similar fashion. Remark also that these properties can be defined in a purely
combinatorial manner. For instance, punctures on the topological surface are
nothing but finite loops on the modular graph. In fact, modular graphs are
precisely the dual graphs of triangulations of punctured topological surfaces,
where the vertices of the triangles are situated at punctures and along bound-
ary components.

2.3 Modular graphs and the modular curve

There is the well-known action of the modular group PSL2(Z) on the upper
half plane H, simultaneously by conformal transformations and by hyperbolic
isometries. The bipartite Farey tree admits a realization on the upper half plane,
such that the action of PSL2(Z) on F is compatible with the action on H. This
realization is obtained by identifying an edge of F with the geodesic arc, which
is the half of the lower boundary component of the standard fundamental region
of the PSL2(Z)-action on H.

Figure 2: The fundamental region of the PSL2(Z)-action on the upper half
plane.

The Farey tree F is then identified with the PSL2(Z)-orbit of this geodesic
arc. By the compatibility of actions, every modular graph has a canonical
realization as a piecewise analytic and geodesic subset of a Riemann surface
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with a canonical hyperbolic metric. (This last sentence is to be understood in
the extended sense of orbifolds and cone-metrics, due to the existence of fixed
points of the action.) Note that the analytic and the hyperbolic structures of
the ambient surface are determined by the graph.

2.4 Covering categories of the modular arc

Our aim in this section is to introduce the category of finitely generated sub-
groups of PSL2(Z) of infinite index and the equivalent category of coverings of
the modular arc with a base-edge. The simplest examples are Z-subgroups, but
there are many others and this system will be our playground in this paper.

The category (directed poset) of coverings of the modular arc with a base
edge, is equivalent to the category of subgroups of the modular group with
inclusions as morphisms. We denote the former system with Cov∗(⊗−−•) and
the latter with Sub(PSL2(Z)). Since intersection of subgroups is a subgroup,
both of these systems are directed. The category Cov∗(⊗−−•) is the category of
modular graphs with a base edge, where morphisms are coverings of modular
graphs with a base edge. Forgetting base edges yields the covering category
of the modular arc, denoted as Cov(⊗−−•). Both three of these categories has
uncountably many objects as there exists uncountably many modular graphs.

The category Cov∗(⊗−−•) has the full sub-category FCov∗(⊗−−•), which consists
of base-edged coverings of finite degree, equivalent to the category of finite-
index subgroups of PSL2(Z) under inclusion. We denote this latter category
by FSub(PSL2(Z)). The category FCov∗(⊗−−•) is countable, since its objects
are finite modular graphs with a base edge. Forgetting base edges yields the
category finite coverings of the modular arc, denoted as FCov(⊗−−•). The finite
modular graphs are realized on Riemann surfaces with a positve number of
punctures and orbifold points. These graphs have several peculiar properties,
for example, they parametrize arithmetic Riemann surfaces (Belyi theorem).
If we metrize them (by associating a length to each edge), they parametrize
decorated Teichmüller spaces of punctured surfaces (Penner’s work). Moreover,
mapping class groups of punctured surfaces can be described in terms of these
graphs, see Theorem 4.4 below.

The category Sub(PSL2(Z)) has another, (much neglected!) full sub-category,
denoted as FGISub(PSL2(Z)), which consists of Finitely Generated Infinite-
index Subgroups of the modular group. This category is equivalent to the
category of infinite base-edged modular graphs of finite topology (i.e. with
a finitely generated fundamental group). We denote this latter category by
FGICov∗(⊗−−•). It has countably many objects. Forgetting base edge yields
the category of infinite modular graphs with finite topology, denoted henceforth
as FGICov(⊗−−•). Note that unlike the categories Cov(⊗−−•) and FCov(⊗−−•),
the category FGICov(⊗−−•) has no final object. Its initial object is F ; the
corresponding subgroup being {I} ⊂ PSL2(Z).

Finite coverings of an object of FGICov(⊗−−•) are always in FGICov(⊗−−•);
however, this is not true for infinite coverings in general. Note that there do
exist some infinite coverings among its objects. For example, 〈L〉 is an infinite
index subgroup in 〈L,XSX−1〉 and the latter is a finitely generated subgroup
which is of infinite index for X 6= I, S, L, L2, LS, L2S. Hence

〈L〉\F −→ 〈L,XSX−1〉\F
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is an infinite covering in FGICov(⊗−−•) for generic X.
A modular graph of finite topology may have at most a finite number of

punctures or pending (terminal) vertices. There may be no punctures at all.
Besides these, an infinite modular graph of finite topology must have some Farey
branches; i.e. subgraphs which are trees with only one terminal vertex. Note
that Farey branches are simply connected so these don’t effect the finiteness
of the topology of the modular graph. These modular graphs are realized on
Riemann surfaces with finitely many punctures, orbifold points and boundary
components. These boundary components are in a sense created by the Farey
branches attached to the modular graph.

As an example, any Z-subgroup generated by an element of infinite order in
PSL2(Z) falls into the category FGISub(PSL2(Z)).

Figure 3: A pair of pants.

3 Boundary of F and continued fraction map

Here our goal is to prepare the ground for the study of the flip action on the
boundary of F , which gives rise to an avatar of Thompson’s group as the group
PPSL2(Z) of piecewise-PSL2(Z) homeomorphisms of S1 with rational break
points. In the last part, it will be shown that flips on the çark groupoid act on
çark boundaries. We will capture a nice representation of the çark groupoid.

3.1 Paths on F and the boundary of F .

A path on a graph G is a sequence of edges e1, e2, . . . , ek of G such that ei
and ei+1 are coincident at a vertex, for each 1 ≤ i < k. The objects of the
fundamental groupoid of G are the edges of G and the morphisms are defined to
be non back-tracking oriented paths. Composition in the groupoid is defined as
the concatenation of paths wherever possible.

Since the edges of F are labeled by reduced words in the letters L and S,
a path in the bipartite Farey tree F is a sequence of reduced words (Wi) in
L and S, such that W−1

i Wi+1 ∈ {L,L2, S} for every i. Since F is connected
and simply connected, there is a unique non-backtracking path through any
two edges, and the fundamental groupoid is identified with the pair groupoid of
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PSL2(Z). To be more precise, one has

Obj(Π1(F)) = E(F) = {W : W ∈ PSL2(Z)},
Mor(Π1(F)) = E(F)× E(F)

An end of F is an equivalence class of infinite (but not bi-infinite) non-
backtracking paths in F , where eventually coinciding paths are considered to be
equivalent, [4]. In other words, an end of F is the equivalence class of an infinite
sequence of finite reduced words (Wi) in L and S with W−1

i Wi+1 ∈ {L, S} for
every i, where sequences with coinciding tails are equivalent. One may also view
the end (Wi) of F as the pair (W1,W ), where W1 is the starting edge and W
is the infinite word

W =

∞∏
i=1

W−1
i Wi+1

in L and S. Here infinite words with different starting edges are taken to be
equivalent.

Let us denote by ∂F the set of ends of F . The action of PSL2(Z) on F
extends to an action on the set ∂F , the element M ∈ PSL2(Z) sending the path
(Wi) to the path (MWi). (Note that this is not the PSL2(Z)-action on the set
of paths of F , introduced in the above remark.) This action is neither free nor
transitive, see the next section for details.

Given an edge e of F and an end b of F , there is a unique path in the class
b which starts at e. Hence for any edge e, we may canonically identify the set
∂F with the set of infinite non-backtracking paths that start at e. We denote
this set latter set by ∂Fe and endow it with the product topology. Intuitively,
closeness of two paths is determined by the number of common edges. Note
that for an arbitrary graph G; given an edge e, the sets ∂G and ∂eG are not in
bijection.

Given any edge e′ of F , the spaces ∂Fe and ∂Fe′ are canonically homeo-
morphic. This homeomorphism is given by pre-composing with the unique path
joining e to e′. The above-mentioned action of the modular group on the set
∂F induces an action of PSL2(Z) by homeomorphisms of the topological space
∂Fe, for any choice of a base edge e.

∂Fe is an uncountable, compact, totally disconnected, Hausdorff topological
space. Hence it is homeomorphic to the Cantor set. We want to “contract
the holes” of this Cantor set to obtain the continuum, as follows. Define a
rational end of F to be an eventually left-turn or eventually right-turn path.
Now introduce the equivalence relation ∼ on ∂F as: left- and right- rational
paths which bifurcate from the same vertex are equivalentb see Figure 4. We
will see that (Theorem 3.1) the set of rational ends modulo this equivalence
relation is in natural correspondence with the set of rational numbers.

3.2 Continued fraction map.

Recall that, as sets, ∂Fe and ∂F are in bijection. On the quotient space ∂Fe/∼
there is the quotient topology induced by the topology on ∂Fe such that the
projection map

∂Fe −→ ∂Fe/∼
bOne may consider these two paths as forming a horocycle at a rational point at infinity
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Figure 4: The left and right turn paths which bifurcate from the vertex
{W,WL,WL2}.

is continuous. We shall denote this quotient space by S1
e . This equivalence

relation is preserved under the canonical homeomorphisms ∂Fe −→ ∂Fe′ and
is also respected by the PSL2(Z)-action. Therefore we have the commutative
diagram

∂Fe −→ ∂Fe′

↓ ↓
S1
e −→ S1

e′

where the horizontal arrows are canonical homeomorphisms and the vertical
arrows are projections. Moreover, PSL2(Z) acts by homeomorphisms on S1

e , for
any e.

Now, F comes equipped with a distinguished edge, the edge marked I, the
identity element of the modular group. Hence all spaces S1

e are canonically
homeomorphic to S1

I .
Any element of S1

I can be represented by an infinite word in L and S. Re-
grouping occurrences of LS and L2S, any such word x of S1

I thus can be written
in one of the following forms:

x = (LS)n0(L2S)n1(LS)n2(L2S)n3(LS)n4 · · · or

x = S(LS)n0(L2S)n1(LS)n2(L2S)n3(LS)n4 · · · ,

where n0, n1 · · · ≥ 0. Since our paths do not have any backtracking we have
n0 ≥ 0 and ni > 0 for i = 1, 2, · · · . The pairs of words

(LS)n0 · · · (LS)nk+1(L2S)∞ and (LS)n0 · · · (LS)nk(L2S)(LS)∞, (k even)

(LS)n0 · · · (L2S)nk+1(LS)∞ and (LS)n0 · · · (L2S)nk(LS)(L2S)∞, (k odd)

correspond to pairs of rational ends and represent the same element of S1
I . For

irrational ends this representation is unique.
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Set U(z) = 1/z. Noting that

LS(z) = T = 1 + z =⇒ (LS)n(z) = n+ z and

L2S(z) = 1/(1 + 1/z) = UTU(z) =⇒ (L2S)n = UTnU,

we can rewrite the element x ∈ S1
I of the form

x = Tn0UTn1UTn2Tn3UTn4 · · ·
x = STn0UTn1UTn2Tn3UTn4 · · ·

We shall employ the usual notation for the continued fractions

[n0;n1, n2, . . . ] := n0 +
1

n1 +
1

n2 +
1

. . .

Define the continued fraction map κ : S1
I → R̂ by

κ(x) =

{
[n0, n1, n2, . . . ] if x = Tn0UTn1UTn2Tn3U . . .

−1/[n0, n1, n2, . . . ] if x = STn0UTn1UTn2Tn3U . . .

Theorem 3.1. The continued fraction map is a homeomorphism.

Proof. First note that this map is well defined as it respects the equivalence of
pairs of rational ends: [n0, . . . nk +1,∞] and [n0, . . . nk, 1,∞] represent the same
number. Moreover, it is bijective from the set of rational ends modulo equiva-
lence of pairs onto the set of rational numbers. Now an infinite path determines a
unique Dedekind cut. Precisely, given an infinite path x = Tn0UTn1UTn2 · · · ) ∈
S1
I the set A is defined to be the set of all rational paths which are to the rightc

of x and to the left of the path x−∞ = (SL2)∞, and the set B is defined to
be the set of all paths which are to the left of x and to the right of the path
x∞ = (LS)∞.

As a consequence of this result, we see that the continued fraction map con-
jugates the PSL2(Z)-action on S1

I to its action on R̂ by Möbius transformations.

3.3 Flip action on S1
I

Constructing F from the modular group endows F with a distinguished base
edge, I. On the other hand, every degree two vertex, say {W,WS}, and the
two edges that are incident to this vertex, namely W and WS, may be repre-
sented uniquely by an ordered pair (W,WS), where without loss of generality
we assume that W is a word not ending with S, which is equivalent to saying
that the length of W is strictly less than that of WS. Now, given any such
pair (W,WS), except (I, S), the action of the flip, f(W,WS) = fW , on an infinite
path x on F is defined as follows:

cBy a path, y, to the right of a given path x we mean that x and y agree in a finite word,
W , and the first letter of x after W is L whereas that of y is L2.
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fW (x) =


WL2SLSW ′ , if x is of the form WL2SW ′ for some W ′

W (L2S)2W ′ , if x is of the form WSLSW ′ for some W ′

WSW ′ , if x is of the form WSL2SW ′ for some W ′

x , otherwise

in the case where the edge I is closest to the lower left edge, see Figure 5. If
the edge labeled I is closest to the upper left edge, then

fW (x) =


WLSL2SW ′ , if x is of the form WLSW ′ for some W ′

W (LS)2W ′ , if x is of the form WSL2SW ′ for some W ′

WSW ′ , if x is of the form WSLSW ′ for some W ′

x , otherwise

Figure 5: The action of flip on the pair (W,WS) on infinite paths.

Finally, flip on the pair (I, S) is defined as:

f(I,S)(x) =


L2SW ′ , if x is of the form SL2SW ′ for some W ′

SL2SW ′ , if x is of the form SLSW ′ for some W ′

L2SW ′ , if x is of the form LSW ′ for some W ′

SLSW ′ , if x is of the form L2SW ′ for some W ′

In summary, the action of a flip is trivial on an end x if x does not agree
with all but the last two letters of the word W . If this is indeed the case, that
is if x agrees with W except the final letter or all W then the action is merely
an HI-move on the path.

The inverse of a flip on the pair (W,WS) is a flip on the pair (WL2,WL2S)
except when (W,WS) = (I, S). The flip on the pair (I, S) is of order four.
Moreover, flips applied to (WL2,WL2S), (WLSL2,WLSL2S), (WL,WLS),

12



Figure 6: The pentagon relation.

(WL,WLS) and finally to (WL2SL2,WL2SL2S) in this order is identity. Re-
mark that this is nothing but the pentagon relation, see Figure 6.

Given any two pairs (W,WS) and (W ′,W ′S) different from (I, S), byW∩W ′
let us denote the word in S, L and L2 which is the maximal common part of
both W and W ′. Let us define the difference d[(W,WS), (W ′,W ′S)] of the pair
(W,WS) and (W ′,W ′S) as another pair of integers (d1, d2), where d1 (resp. d2)
is the number of edges of the finite non-backtracking path whose initial edge
is the word W ∩W ′ and final word is W (resp. W ′) minus 2. The distance,
δ[(W,WS), (W ′,W ′S)], or δ[W,W ′] for short, between two pairs (W,WS) and
(W ′,W ′S) is then defined to be:

δ[W,W ′] =

{
d1 + d2 , if both d1 and d2 are positive

0 , otherwise

Now, two flips (W,WS) and (W ′,W ′S) commute if the distance δ[W,W ′] ≥ 4.
In particular, if W ∩W ′ is I, then the corresponding flips commute.

Lemma 3.2. The action of flips on boundary of F induces a well-defined action
on S1

I by homeomorphisms.

Proof. Let x and y be the two elements of the equivalence class. Then by
definition there is an element x∩ y ∈ PSL2(Z) such that x = (x∩ y)LS(L2S)∞

and y = (x∩y)L2S(LS)∞. As is observed above, for any flip determined by the
word W = (x ∩ y)LS(L2S)kL or W = (x ∩ y)LS(L2S)kL2, where k is assumed
to be a positive integer, acts trivially on y because the distance δ is larger than
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4 and fixes x. Similarly, W = (x ∩ y)L2S(LS)kL or W = (x ∩ y)L2S(LS)kL2

acts trivially on x because the distance δ is larger than 4 and fixes y. The only
remaining case is to consider the action on (x ∩ y)L and on (x ∩ y)L2. Because
of symmetry, it is enough to look at W = (x ∩ y)L:

fW (x) = (x ∩ y)L(LS)2(L2S)∞

= (x ∩ y)(L2S)LS(L2S)∞

= X(LS)(L2S)∞

and

fW (y) = (x ∩ y)LLS L2S (LS)∞

= (x ∩ y)L2S L2S(LS)∞

= X(L2S)(LS)∞;

where X = (x ∩ y)L2S(LS)∞. This action is by homeomorphisms since flips
preserve right-left pairs of rational ends.

3.4 The action of flips on R̂

In Theorem 3.1, we have seen that the spaces R̂ and S1
I are homeomorphic.

Using Lemma 3.2 we deduce that flips act on R̂. To describe the action, let us

choose an arbitrary pair (W,WS) different from (I, S), and say W =

(
p r
q s

)
so thatWS =

(
q −p
s −r

)
. Then the continued fraction map induces the unique

piecewise fractional linear transformation sending

(
p

r
,
p− q
r − s

)
7→

(p
r
,
q

s

)
(
p− q
r − s

,
q

s

)
7→

(
q

s
,
p+ 2q

r + 2s

)
(
q

s
,
p+ q

r + s

)
7→

(
p+ 2q

r + 2s
,
p+ q

r + s

)

and constant everywhere else, if WL is closer to I than WL2. In the remaining
case, the map on R̂ is given by the piecewise linear fractional transformation
sending:

(
p+ q

r + s
,
p

r

)
7→

(
p+ q

r + s
,

2p+ q

2r + s

)
(
p

r
,
p− q
r − s

)
7→

(
2p+ q

2r + s
,
p

r

)
(
p− q
r − s

,
q

s

)
7→

(p
r
,
q

s

)
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and constant elsewhere. One computes also that the mapping defined on R̂ by
the pair (I, S) is the unique piecewise fractional linear transformation given as
follows, compare [5]:

(−∞,−1) 7→ (−1, 0) given by z 7→ z+1
z

(−1, 0) 7→ (0, 1) given by z 7→ z + 1
(0, 1) 7→ (1,∞) given by z 7→ −1

z−1

(1,∞) 7→ (−∞,−1) given by z 7→ z
1−z

In fact, the piecewise linear fractional transformations obtained above are
elements of PSL2(Z). Furthermore, we have:

Theorem 3.3. The fundamental group of the groupoid whose single object is
the set of infinite paths based at I and the set of morphisms is generated by flips
is isomorphic to Thompson’s group T .

For the proof it is enough to consider the map sending the flip on the pair
(I, S) to α and the sequence of flips given by (L,LS), (I, IS), (SL, SLS), (I, IS)
and (L,LS) (with this order) to β, [7, Theorem 1]. Another set of generators of
T is given in [2] and the corresponding flip sequences, which we denote in terms
of α and β for brevity, are as follows:

A 7→ βα2

B 7→ β2α
C 7→ β2

Moreover, we have the following:

Corollary 3.4. Given any class of an infinite path, call x, based at I, the
fundamental group of the groupoid whose set of objects consists of equivalence
classes of infinite paths on F based at I and the set of morphisms is generated
by flips away from x is a subgroup of T isomorphic to Thompson’s group F .

By morphisms away from the path we mean the set of morphisms which
fix the class of the path x. Moreover, if we use the piecewise fractional linear
transformation presentation of the T , then this subgroup coincides with those
fractional linear transformations which fix the real number corresponding to the
path x.

4 The class groupoid

In this section, our aim is to generalize the construction of the so called Ptolemy
groupoid, see for instance [10], or [8]. The construction (i.e. the class groupoid)
we propose unifies both into the finite case and the infinite case. We will
observe that the previous section concerning boundary of the Farey tree, its
ends and continued fractions (which is related very closely to the universal Te-
ichmüller space Homeo+/PSL2(Z)) are merely particular cases of certain the
class groupoid. We will also recover the Ptolemy groupoids associated to sur-
faces of genus g with n punctures and hence mapping class group of a surface
of genus g with n punctures as a connected component of the class groupoid.
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Figure 7: Flip on an edge of a modular graph.

4.1 Flips and admissible configurations

For subgroup Γ of the modular group, PSL2(Z), the flip associated to an edge
(Γ\F) ·W of the corresponding modular graph Γ\F is defined as the HI-move
(or Whitehead move) at this edge. This flip will be denoted by φΓ·W

d, see
Figure 7.

In particular, flip on the edge Γ ·W induces the following map on the edges:

Γ ·W 7→ Γ′ ·W
Γ ·WS 7→ Γ′ ·WS

Γ ·WL 7→ Γ′ ·WL2

Γ ·WL2 7→ Γ′ ·WSL

Γ ·WSL 7→ Γ′ ·WSL2

Γ ·WSL2 7→ Γ′ ·WL

where Γ′ is the image group φΓ·W (Γ). The flip defined by the edge WS induces
the same map on the set of edges. So there is a one to one correspondence
between pair of cosets (Γ ·W,Γ ·WS) and flips from Γ.

Flips preserve valencies of vertices but does not respect the incidence rela-
tion, hence is not a graph homomorphism. But flips leave the genus, the number
of punctures and the number boundary components which are homeomorphic to
circle of a modular graph fixed. Hence the topological type of the corresponding
surface obtained by thickening the modular graph is the same.

A pair (Γ ·M,γ ·M); where γ ∈ Γ and M ∈ PSL2(Z) is called a coset pair.
Two coset pairs (Γ ·M,γ ·M) and (Γ′ ·M ′, γ′ ·M ′) are called equal if Γ = Γ′,
Γ ·M = Γ′ ·M ′ and γ ·M = γ ·M ′.

dSome care must be taken in defining flips whenever Γ ·W = Γ · I, see for instance [5, §2].
We follow the positive orientation convention in defining the flip on the base edge. Whenever
Γ ·W is a dangling edge (or an orbifold point), see for instance [11, Definition 2.14].
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Definition 4.1. An admissible configuration of coset pairs for Γ is a set A of
coset pairs so that

i. for each coset, say Γ ·Mo of Γ in PSL2(Z), A contains exactly one coset
pair of the form (Γ ·Mo, γ ·Mo) for some γ ∈ Γ,

ii. A can be decomposed into a disjoint union of sets of size 3 each of which
can be written as {(Γ ·M,γ ·ML), (Γ ·ML, γ ·ML), (Γ ·ML2, γ ·ML2)}

iii. for every element (Γ · M,γ · M) ∈ A there is a corresponding element
(Γ ·MS, γ′ ·MS) so that (γMS)−1γ′MS ∈ Γ.

In fact, the above definition is equivalent to the choice of a fundamental
domain in the universal cover H, so that the part of the Farey tree (realized
as the orbit of the geodesic connecting the fixed point of L to that of S) lying
in this fundamental domain is isomorphic to the modular graph Γ\F . Given
A, one may recover the graph Γ\F and the group Γ. The disjoint sets of size
3 correspond to edges of the modular graph lying in a single triangle in an
appropriate ideal triangulation of the corresponding thickening. The pairing
explained in part iii. determines gluing of the triangles in order to recover the
surface. The number of elements in an admissible configuration is exactly the
number of distinct coset of Γ in PSL2(Z).

Example 4.2. Let us consider the group Γ = 〈L2SLS,LSL2S〉. We refer to
Figure 8 for the corresponding modular graph where the bold edge indicates the
base edge. The sets

A1 = {(·I, I), (·L,L), (·L2, L2), (·S, S), (·SL, SL), (·SL2, SL2)}
A2 = {(·I, I), (·L,L), (·L2, L2), (·S,LSL2), (·SL,LS), (·SL2, LSL)}

are both admissible configurations; where for sake of brevity we dropped Γ from
the first component. However,

A = {(·I, I), (·L,L), (·L2, L2), (·S, S), (·SL,LS), (·SL2, SL2)}

is not an admissible configuration. It violates ii.

Figure 8: Modular graphs of the admissible configurations A1 and A2 on the
torus with one puncture.

The definition of flips on the set of cosets can be used to define a flip on
an admissible configuration for Γ, where the action is on both the coset Γ ·W
and the element γW of the coset as defined earlier. We also keep the previously
introduced notation φΓ·W for flips. We have φΓ·W = φΓ·WS . Given and admis-
sible configuration of a subgroup Γ ≤ PSL2(Z) there are |A|/2 many possible
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flips. A flip φΓ·W for the subgroup Γ sends an admissible configuration A for Γ
to an admissible configuration for the group Γ′ := φΓ·W (Γ).

We define the class groupoid as the groupoid C G whose set of objects is the
set of all admissible configurations of all subgroups of the modular group. The
morphisms in this groupoid is generated by flips. That is,

Mor(C G )(A,A′) := {(A1, A2, . . . Ak), A = A1, A
′ = Ak}

where (A,A, . . . Ak) is a sequence of admissible configurations for subgroups of
PSL2(Z), such that the Ai+1 is obtained from Ai by the flip φi. We will denote
such sequence by the triple (A,A′, φ), where φ is the composition of all the flips
φk ◦ . . . ◦ φ1. We will call two flip sequences (A1, A

′
1, φ1) and (A2, A

′
2, φ2) to be

equivalent if A1 = A2, A′1 = A′2 and φ1 = φ2. This is an equivalence relation,
and each equivalence class will be denoted by [A,A′, φ].

Flips do not change the invariants like genus, number of punctures of a
modular graph so this groupoid is not connected. Given an element Γ ∈
Sub(PSL2(Z)), we denote by C G Γ the connected component of Γ in the class
groupoid.

4.2 Ptolemy groupoids and C GΓ.

Let A be an admissible configuration and T be a triple, that is a set of coset
pairs in A of the form

{(Γ ·M,γ ·ML), (Γ ·ML, γ ·ML), (Γ ·ML2, γ ·ML2)},

for some γ ∈ Γ. One can find a word MT so that MT ∩ g = I for any g ∈ Γ. In
this case, we can write the triple as

{(Γ ·M,γ′ ·MTL), (Γ ·ML, γ′ ·MTL), (Γ ·ML2, γ′ ·MTL
2)}.

Now for an arbitrary automorphism ω of Γ we define the ω(T ) to be the triple

{(Γ ·M,γ′ ·M ′TL), (Γ ·ML, γ′ ·M ′TL), (Γ ·ML2, γ′ ·M ′TL2)};

where M ′T = MT if MT ∩ g = I for any generator g of Γ. Otherwise, i.e. if for
some generator g of Γ, we have g ∩MT is a non-empty word of length ` (i.e.
there are `-many letters in this word), then we define M ′T to be word comprising
of the first ` letters of ω(g). It is only combinatorially cumbersome to show that
this is indeed an action of the group Aut(Γ) on the set of triples, and that the
image of an admissible configuration is again an admissible configuration. Also
note that the normal subgroup of inner automorphisms of Γ (i.e. maps of the
form ωg(x) = g−1xg; for g ∈ Γ) induce the identity mapping on admissible
configurations. Therefore, we obtain an action of Out(Γ) := Aut(Γ)/Inn(Γ) on
the set of admissible configurations.

In the case when Γ ∈ FSub(Γ). The surface Γ\H is of finite type, it has
finite genus, say g, and finitely many punctures, say s-many. This means in
particular that the associated modular graph is finite. For future reference we
note the following:

Proposition 4.3 ([9, Lemma 1.2]). Let Γ,Γ′ ≤ PSL2(Z) be two subgroups
whose corresponding modular graphs are finite modular graph of genus g with n
punctures. Then
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• for any admissible configurations A1, A2 of Γ, the set MorCG (A1, A2) is
not empty, and

• for any admissible configuration A of Γ and A′ of Γ′, there set MorCG (A,A′)
is not empty, whenever (g, n) 6= (0, 3) or (1, 1).

In practice this says that the sub-groupoid C GΓ is connected, except for
the mentioned two cases, and that the symmetric group on the set of edges of
the associated modular graph can be embedded in C GΓ whenever Γ is of finite
index.

Let Modn
g denote the mapping class group of the surface Γ\H. The well-

known Dehn-Nielsen-Baer theorem, [3, Theorem 8.8] establishes the isomor-
phism between Modn

g and Out(Γ). Therefore, we obtain an action of the map-
ping class group on admissible configurations in C GΓ. Let us declare two ad-
missible configurations, say A1 and A2, to be equivalent if and only if there is
an element ω ∈ Out(Γ) so that ω(A1) = A2. Since the group Γ is of finite index,
the fundamental group of the groupoid equipped with this equivalence relation
is the symmetric group, as a result of Proposition 4.3. In this case, we say that
Modn

g is a subgroup of C GΓ of finite index. Let us summarize:

Theorem 4.4 (Mosher, Penner). For Γ ∈ FSub(PSL2(Z)), the sub-groupoid
C G Γ contains Modn

g whose index is finite.

4.3 Boundaries of subgroups of the modular group

Let E(Γ) denote the set of all cosets of the subgroup Γ ≤ PSL2(Z). We call
two cosets Γ · W and Γ · W ′ to be equivalent if and only if for any element
γW in Γ ·W , there is at least one element γ′W ′ in Γ ·W ′ so that the product
(γW )−1(γ′W ′) ∈ 〈LS〉. We write Γ · W ∼Γ Γ · W ′ to indicate that the two
cosets are equivalent. This relation is easily seen to be reflexive and symmetric.
To see transitivity, say Γ ·W is equivalent to Γ ·W ′ and Γ ·W ′ is equivalent
to Γ · W ′′. Then for any element γW ∈ Γ · W , there is an element γ′W ′ in
Γ · W ′ so that (γW )−1γ′W ′ ∈ 〈LS〉. Then for the element γ′W ′, there is a
corresponding element, say γ′′W ′′ in Γ ·W ′′ with (γ′W ′)−1γ′′W ′′ ∈ 〈LS〉. Then
(γW )−1γ′′W = (γW )−1

(
(γ′W ′)(γ′W ′)−1(γ′′W ′′)

)
∈ 〈LS〉. We proved:

Lemma 4.5. The relation ∼Γ described above is an equivalence relation.

An equivalence class of this relation will be called a boundary point of the
group and denoted by [Γ ·W ]. The set of all boundary points of the group will
be called the boundary of Γ and denoted by ∂Γ.

Let us explain the terminology. For any coset Γ ·W , we consider

(Γ ·W )(∞) := {γW (∞) : γ ∈ Γ},

that is, the set of values of all the transformations in the coset Γ ·W at∞. Since
each transformation is in PSL2(Z), this is a subset of the rational numbers.

Lemma 4.6. Two cosets Γ ·W and Γ ·W ′ are equivalent if and only if (Γ ·
W )(∞) = (Γ ·W ′)(∞).
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Proof. Say (Γ ·W )(∞) = (Γ ·W ′)(∞). Let γW be an arbitrary element of Γ ·W .
There is an element γ′ ∈ Γ with the property that γW (∞) = a = γ′W ′(∞).
Then the composition (γW )−1(γW ′) fixes ∞. Therefore, it is an element of
〈LS〉. Conversely, suppose that Γ·W ∼Γ Γ·W ′. For a ∈ (Γ·W )(∞) arbitrary, let
γW ∈ Γ·W so that γW (∞) = a. As Γ·W ∼Γ Γ·W ′, there is an element γ′ ∈ Γ so
that (γW )−1(γ′W ′) ∈ 〈LS〉. Then γ′W ′(∞) = (γW )(LS)n(∞) for some n ∈ Z.
Note that LSn fixes ∞, hence γ′W ′(∞) = a, that is (Γ ·W )(∞) ⊆ (Γ ·W ′)(∞).
We obtain the reverse inclusion by symmetry.

One consequence of the previous lemma is that we can write [Γ · W ](∞)
instead of (Γ · W )(∞). The equivalence relation ∼Γ induces an equivalence
relation on the set of rationals. Namely, two rational numbers x and y are said
to be equivalent if there is an element W ∈ PSL2(Z) so that x, y ∈ [Γ ·W ](∞).

The above construction can be repeated for any other subgroup P of the
modular group which is conjugate to 〈LS〉. Instead of evaluation at ∞, one
should consider evaluation at the unique fixed point of P . We have chosen
this particular map, merely because it fits perfectly into the continued fractions
and other classical subjects. This construction is also in accordance with the
constructions made purely on graphs, see [4]. These matters will be treated
in detail in Section 3 for the case when Γ = {I}, where we recover a theorem
of Penner concerning the universal Teichmüller space. In the next example we
treat the order 3 elliptic subgroup. Order 2 case is similar.

Example 4.7. Set Γ = {I, L, L2}. The modular graph corresponding to Γ is
depicted in Figure 9. The base edge is the root of the tree. The values of the
equivalence class of the coset Γ · I = {I, L, L2} is {∞, 1, 0} respectively. This is
denoted by + in the figure. Similarly, the coset values of the equivalence class
of the coset Γ ·SL is {−1, 2, 1/2}, respectively. For instance, the same coset can
be represented by Γ · SLSL2, whose elements assume exactly the same values,
i.e. {−1, 2, 1/2}, in the this order.

Figure 9: Boundary of the subgroup Γ = {I, L, L2}.
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Given a coset of the group Γ, say Γ ·W , one can use the previously defined
flip acting on the corresponding modular graph Γ\F , φΓ·W , to define a map on
∂Γ, see Figure 10. We denote this map by φ∂Γ·W . Explicitly, we have:

[Γ ·WL] 7→ [Γ′ ·WL2] = [Γ′ ·WS]

[Γ ·WL2] 7→ [Γ′ ·WSL]

[Γ ·WSL] 7→ [Γ′ ·WSL2] = [Γ′ ·W ]

[Γ ·WSL2] 7→ [Γ′ ·WL]

where Γ′ = φΓ·W (Γ). Observe that the flip φ∂Γ·WS induces the same map on ∂Γ.
So there is a one to one correspondence between pairs of cosets (Γ ·W,Γ ·WS)
and maps flips on the boundary.

Figure 10: The action of flip on the boundary of Γ ≤ PSL2(Z).

Suppose now that Γ = {I}. All cosets contain only one element, hence the
sets [Γ · W ](∞) contain exactly one element. The corresponding equivalence
relation on the set of rational numbers is the trivial relation, and therefore flips
act on Q. Identifying each equivalence class [Γ ·W ] with the corresponding end
gives an identification of rationals in S1

I . Then the following theorem becomes
a direct consequence of Theorem 3.3:

Theorem 4.8 (Penner). For the trivial subgroup Γ = {I} ∈ Sub(PSL2(Z)),
the fundamental group of the sub-groupoid of C G Γ is Thompson’s group T .

First, let us remark that Thompson’s group T can be regarded as the univer-
sal mapping class group. For the proof, one has to use the fact that the action
of flips on the corresponding admissible configuration is equivalent to the action
of the flip on ∂Γ. If this is the case, then the groupoid is closely related to the
fundamental group of this groupoid. However, this identification is not possible
in all cases. For instance, when Γ ≤ PSL2(Z) if of genus g with n punctures,
|∂Γ| is finite, as it is only comprised of classes corresponding to the punctures.
In fact, one can identify an admissible configuration for the group Γ with a
choice of a rational number selected from the class [Γ ·W ](∞) for each puncture
in ∂Γ. This induces an action of Modn

g on certain subsetse of Q whenever the

eIt is possible to give a more precise definition of such sets, but we will not take on this
task here.
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graph is finite.
We define the modular groupoid, denotedM, as the groupoid whose objects

are boundaries of subgroups of the modular group and whose morphisms are
generated by flips. Given an admissible configuration A, forgetting the second
component of each pair (Γ ·M,γ ·M) gives a well-defined map from M and
C G and hence M becomes a sub-category of C G . By abuse of language we
say that M is a projection of C G . M has many connected components. For
any given subgroup Γ ≤ PSL2(Z) the connected component of M containing Γ
will be denoted by MΓ. The difference between C G and M is visible when Γ
is a finite index subgroup of genus g with n punctures. We have seen that in
this case, Modn

g can be embedded into C GΓ and the image is of finite index, see
Theorem 4.4. However,MΓ does not admit such an embedding merely because
it does have only finitely many objects having finitely many cosets Γ ·M , and
hence admit only finitely many morphisms.

If, however Γ is the trivial subgroup, then C GΓ = MΓ. If for a subgroup
Γ ≤ PSL2(Z) the surface Γ\H has trivial mapping class group, e.g. when Γ is
a finite subgroup, then there is no advantage in considering C GΓ = MΓ. The
case of the trivial subgroup (see Theorem 4.8) shows that the modular groupoid
contains the relevant information in this case.

5 The çark groupoid

This section is devoted to the study the connected components of the sub-
groupoid C GΓ; where Γ is a subgroup of the modular group generated by one
element. A çark is defined as the quotient of F by Γ. Notice that çarks’
characteristics are determined by the type of the generator. We investigate
each case separately.

Notice that the set of objects in C G which are generated by one element
forms a sub-category of the the class groupoid. There are seven connected
components of the çark sub-groupoid: one connected component corresponds to
the trivial group which has been treated in the previous section, four components
stemming from elliptic elements of order two (denoted C G2) and three (denoted
C G3), one component corresponding to parabolic subgroups (denoted C Gp) and
one corresponding to hyperbolic subgroups, denoted C Gh. Let us investigate
each non-trivial component in turn.

5.1 Elliptic Cases.

Any elliptic element in PSL2(Z) is conjugate to either S, L or L2. The associated
modular graph is a rooted tree, see Figure 11 for the base edge free versions
of the corresponding modular graphs. Since there are only 2 cosets there is
only one admissible configuration associated to each modular graph. Hence we
will do the computations on ∂Γ; where Γ is a subgroup generated by an elliptic
element.

Thickening of each such graphs gives rise to disk with an orbifold point whose
mapping class group is trivial. Therefore, in what follows, as objects, instead of
considering the admissible configurations we will consider the action of flips on
∂Γ\F , i.e. we will consider the projection of C GΓ onto MΓ; where Γ is a finite
non-trivial subgroup of PSL2(Z).
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Figure 11: Elliptic çarks of order 2 and 3, respectively.

5.1.1 Order 2 case.

In this case, we assume that the generator is of order 2 and hence is conjugate
to S. This means that up to the choice of the base edge, all the associated
modular graphs are same. If the root of the tree is chosen as the base edge,
that is if Γ = 〈S〉 = {I, S}, then a case by case analysis shows that there is no
flip sequence (in fact there are only finitely many flips that can be applied to
the root) that moves the base edge. Therefore the group {I, S} constitute one
connected component of C G2 to which we will refer as C G2,S . If the generator
of Γ is not equal to S, then the base edge is not equal to the root. In this case,
base edge, say b, is different from the root. Given any other edge b′ on the graph
which is different from the root, by applying Proposition 4.3 to the finite part
of the graph containing b and b′, we see that there is a sequence of flips sending
the base edge b to b′. Hence, all the remaining order two subgroups form the
other connected component.

As for the corresponding groupoids, as C G2,S has only one object, this com-
ponent of the groupoid is indeed a group.

Theorem 5.1. For the group Γ = {I, S} the groupoid C GΓ = C G2,S is isomor-
phic to Thompson’s group F .

Proof. Recall that the group F is isomorphic to the group of piecewise linear
Möbius transformations of [0,+∞] with finitely many rational break points, see
[1, Section 2]. This group is generated by the two transformations

x0(t) =


[0, 1

2 ] 7→ [0, 1]

[1/2, 1] 7→ [1, 2]

[1,∞] 7→ [2,∞]

and by

x1(t) =


[0, 1] 7→ [0, 1]

[1, 3
2 ] 7→ [1, 2]

[ 3
2 , 2] 7→ [2, 3]

[2,∞] 7→ [3,∞]

Observe that x0 is the map on ∂Γ induced by applying flip on the edge Γ ·L and
x1 is induced by the flip on Γ ·LSL2. The quasi-flip on the root changes only the
ordering of the subsets [Γ ·M ](∞), and hence act trivially on the boundary.

For the remaining case, let Γ be a subgroup of PSL2(Z) of order 2 and
different from {I, S}. As indicated earlier, this is a connected groupoid. The
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flip on the base edge will result in the change of the ordering of [Γ ·M ](∞) and
hence acts trivially on the set of admissible configurations. Recalling the fact
that the conjugation acts as change of base edge on the graph we obtain the
following result as a consequence of Theorem 5.1

Corollary 5.2. The fundamental group of the groupoid C GΓ; where Γ is a
subgroup of order two, different from {I, S}, is isomorphic to Thompson’s group
F .

Let us also note that the previous arguments can be carried out in terms of
continued fractions and ends of the corresponding modular graphs. Indeed, all
the edges of the corresponding çark can be labeled with the word in the cosets
beginning with L or L2 and hence the continued fraction map identifies the
ends with the closed interval [0,+∞]. If we use also the same labels to address
the flips, then we see that this identifies the fundamental group of this elliptic
groupoid with the subgroup of T , see Section 3.4, which fixes [−∞, 0]. This
group is easily seen to be isomorphic to Thompson’s group F , see [2].

5.1.2 Order 3 case.

The groupoid has two connected components. One connected component has
two objects {I, L, L2} and {I, SLS, SL2S}. These two are connected by the
flip on the root. This flip acts by conjugation at the level of subgroups. In
this case, we’ll identify Thompson’s group F with the piecewise linear Möbius
transformations of the unit interval. The generators become the following:

x0(t) =


[0, 1

3 ] 7→ [0, 1
2 ]

[ 1
3 ,

1
2 ] 7→ [ 1

2 ,
2
3 ]

[ 1
2 , 1] 7→ [ 2

3 , 1]

and by

x1(t) =


[0, 1

2 ] 7→ [0, 1
2 ]

[ 1
2 ,

3
5 ] 7→ [ 1

2 ,
2
3 ]

[ 3
5 ,

2
3 ] 7→ [ 2

3 ,
3
4 ]

[ 2
3 , 1] 7→ [ 3

4 , 1]

If we fix Γ = {I, L, L2} then these two maps of the unit interval are induced
by flips on the edges Γ ·SL2 and Γ ·SLSL2. By the conjugation of PSL2(Z) on
the modular graph in question we obtain:

Theorem 5.3. Each connected component of the groupoid C G3 is isomorphic
to Thompson’s group F .

As in the previous sections, similar results can be obtained using the language
of continued fractions and ends of graphs.

5.2 Parabolic Case.

Let Γ be a subgroup generated by a parabolic element. Then it is isomorphic
to Z and one of its generators must conjugate to a power of LS. The surface
obtained by thickening the corresponding modular graph is a punctured disk, see
Figure 12. Once again the mapping class group is trivial, hence we will consider
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Figure 12: Modular graph of Γ ≤ PSL2(Z) conjugate to 〈(LS)4〉.

the projection of this subgroupoid C Gp onto the corresponding component of
the modular groupoid, namely M〈LS〉.

Proposition 4.3 tells us that the groupoid in question is connected. There-
fore, we will set Γ = 〈LS〉. Let us refer to the unique cycle of the modular graph
as the spine of the graph. Any flip on the spine changes the group Γ and any
other flip off the spine fixes the group. Moreover, flips on the spine commute
with any other flip off the spine. Therefore, the class [Γ ·I](∞) is fixed. Flips on
Γ · L2SL2 and Γ · L2SLSL2 induces the maps x0 and x1 viewed as maps from
[0, 1] to [0, 1], see previous section. Let us summarize:

Theorem 5.4. Let Γ be a subgroup of PSL2(Z) generated by a parabolic element.
Then the fundamental group of the connected component MΓ is isomorphic to
Thompson’s group F .

5.3 Hyperbolic Case.

Suppose now that Γ is a subgroup generated by a hyperbolic element. Then
it is isomorphic to Z. The surface obtained by thickening the corresponding
modular graph is an annulus, see Figure 13.

We may repeat the previous arguments once again to obtain the following

Theorem 5.5. Let Γ ≤ PSL2(Z) be a subgroup generated by one hyperbolic
element. Then

• the groupoid C GΓ admits an embedding (in fact an anti-homomorphism)
of Z (i.e. the mapping class group of annulus), and

• the fundamental group of MΓ is isomorphic to Z/2Z⊕ F ⊕ F .

5.4 Concluding Remarks.

There are certain identifications between the objects of the çark groupoids and
binary quadratic form. Among the most interesting is the one between the
groupoid C Ghyp and indefinite primitive binary quadratic forms, see [14]. Such
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Figure 13: Modular graph of the group Γ = 〈L2SLS〉; where the bold edge is
the base edge.

forms correspond to ideal classes in real quadratic number fields. There are a
myriad of arithmetic questions, e.g. class number problems of Gauss, around
these objects, however, it must be admitted that we have failed to extract any
arithmetic information from the class groupoid.
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