
BELYI LATTÈS MAPS
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Abstract. In this work, using elementary tools we determine those Lattès

maps which are at the same time Belyi maps by explicitly determining their
ramification data. It turns out that in the generic case, i.e. when the automor-

phism group is Z/2Z, the corresponding family of Lattès maps are Belyi maps

if and only if the isogeny is multiplication by two. Elliptic curves with extra
automorphisms also determine families of Belyi maps. We provide examples

of some Belyi Lattès maps together with a formula for such maps which may

be used to write Belyi maps of arbitrarily high degree. We conclude the paper
with a discussion of the field of definition of such Belyi pairs.

1. Introduction

An algebraic curve, X, admitting a model whose defining equations have alge-
braic coefficients is referred to as an arithmetic curve. A celebrated theorem of
Belyi, [1], states that arithmetic curves admit a Belyi map, φ; that is, a meromor-
phic function ramified at most over 3 points, which are often fixed as 0, 1 and ∞.
The pair (X,φ) is called a Belyi pair. Conversely, if an algebraic curve X admits
a Belyi map, then X is an arithmetic curve, [18].

The absolute Galois group, Gal(Q/Q), acts on the set of Belyi pairs (X,φ) by
the action of any σ ∈ Gal(Q/Q) on the coefficients of the defining equation(s) of X
and on φ. Even though studying a group via its actions on well-known objects is
a sound principle, understanding the mentioned action in this generality is widely
accepted as a task out-of-reach. One is therefore led to work on certain natural
substructures which are rich enough. It is known that Gal(Q/Q) acts on the set of
arithmetic elliptic curves faithfully, see [9] for a detailed account. More generally,
this action is faithful for arbitrary curves of genus g, see [6], a result which was first
proven for genus 0 case, [14]. There are other families which admit (conjecturally)
a faithful action, see for instance [5, 17].

A map ψ : P1 → P1 is said to be a quotient of an affine map if it is semi-conjugate
to an affine self map of C/Ω; where Ω is an additive subgroup of C, see Section 2
for precise definitions. When Ω is of rank one it turns out that all such maps are
Belyi maps. This motivates the analogous question for rank 2 case. To this end,
we determine Lattès maps which are at the same time Belyi maps using elementary
tools. This approach leads also to an explicit description of associated dessins
d’enfants. It turns out that whenever C/Ω does not have extra automorphisms,
the only isogeny that induces a Belyi map is multiplication by 2 (and its translates).
This gives a family of Belyi maps parametrized over the moduli space of elliptic
curves. For each elliptic curve with extra automorphisms, we obtain families of
Belyi maps. We then address the question of determining the field of definition
of Belyi Lattès maps and the action of Gal(Q/Q) on Belyi Lattès maps. Let us
remark that results in the same vein are obtained by Guralnick, Müller and Saxl,
[7] where the authors study a classification problem referred as exceptionality of
rational maps. Indeed, several Belyi type maps stemming from different underlying
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structures are obtained by the authors. Their results and ours seem to agree in the
particular case of Lattès maps.

2. Fundamental notions

This section is devoted to define and collect some properties Lattès maps which
are particular cases of quotients of affine maps. Our main aim is to state a classi-
fication result (Theorem 2.1).

2.1. Quotients of affine maps. A map ψ : C −→ C of the form ψ(z) = λz + µ,
where λ, µ ∈ C with λ 6= 0, 1, is called an affine map of C. We define a map
φ : P1 −→ P1 to be the quotient of an affine map if there is a commutative diagram
of holomorphic maps :

(1)

C/Ω C/Ω

P1 P1

ππ

ψ

φ

where Ω is a non-trivial discrete subgroup of C and π is a non-constant finite map.
As ψ is Ω periodic we have λΩ ⊆ Ω. This inclusion ensures the holomorphicity of
the map φ, see [3, Theorem 3.20] for a proof. From now on, we consider lattices
up to homotheties. So, without loss of generality, we assume that if rank of Ω is 1
then Ω ∼= Z, and if rank of Ω is 2 then Ω is generated as a Z-module by 1 and τ
for some τ in the fundamental region of the action of PSL2(Z) on the upper half
plane, H. This means, in the rank 1 case λ ∈ Z and in the rank two case λ is an
eigenvalue of an integral non-degenerate 2× 2 matrix (whose eigenvector is (1 τ)t;
where Ω = 〈1, τ〉) and hence is a quadratic algebraic integer. In particular, for
Ω = Z[

√
−1] or Ω = Z[ζ3], λ ∈ Ω; where ζk = exp(2π

√
−1/k).

For simplicity of the exposition, we will assume µ = 0. If Ω is generated by one
element, then by a change of variable, we may assume that the generator is 2π. The
commutativity of the above diagram implies that φ(π(z)) = π(λ z). For π(z) = eiz

we necessarily have φ(w) = wλ. If π(z) = eiz + e−iz then φ(w+w−1) = wλ +w−λ.
Functions satisfying this functional equation are called Chebyshev polynomials. It
turns out that these are the only possibilities up to conjugation in the rank 1 case,
[13, Lemma 3.8]. Notice that both wλ and Chebyshev polynomials are Belyi maps,
i.e. ramified at most over 3 points, see [10, Section 1.4.2].

2.2. Lattès maps. From now on, we assume that Ω is of rank two generated by 1
and τ so that C/Ω is an elliptic curve. In this case, the map φ is called a Lattès map,
a subfamily of which were studied first by Lattès in [12]. The degree of the map
φ is |λ|2. By Riemann-Hurwitz formula, the map ψ is unramified. As ramification
behaves multiplicatively in compositions, we have eψ(z) eπ(ψ(z)) = eπ(z) eφ(π(z));
where ef (x) denotes the ramification index of f at x. So the ramification values
of φ : P1 −→ P1 are a subset of the ramification values of π : C/Ω −→ P1. The
following theorem is due to Milnor :

Theorem 2.1 ([13, Theorem 3.1]). A rational map φ : P1 → P1 is a Lattès map
if and only if there is a lattice Ω, an affine map ψ : C/Ω → C/Ω and some
subgroup G of Aut(C/Ω) so that φ is conjugate, by a Möbius transformation, to
ψ/G : (C/Ω)/G → (C/Ω)/G sending the equivalence class of a point z under the
action of G to the class of ψ(z).
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Let us stress at this point that there are Lattès maps where the map π is not
a quotient map of the form C/Ω → P1 = (C/Ω)/G. In particular, π may be of
arbitrary high degree. The above theorem implies that in all such cases one can
find a full lattice, say Ω′ ⊆ C so that φ is a Lattès map of the form :

C/Ω′ C/Ω′

P1 = (C/Ω′)/G P1 = (C/Ω′)/G

π′π′

ψ

φ

The following table summarizes the automorphism group and possibilities for
the map π : C/Ω→ (C/Ω)/G.

Ω j(C/Ω) Aut(C/Ω) G π

Z[ζ3] 0 Z/6Z Z/6Z ℘3

Z[ζ3] 0 Z/6Z Z/3Z ℘′

Z[ζ3] 0 Z/6Z Z/2Z ℘
Z[ζ4] 1728 Z/4Z Z/4Z ℘2

Z[ζ4] 1728 Z/4Z Z/2Z ℘
otherwise 6= 0 or 1728 Z/2Z Z/2Z ℘

Table 1. Quotient maps from an elliptic curve giving rise to
Lattès maps.

3. Ramification of Lattès maps

Theorem 2.1 and Table 1 allow us to treat each case individually. For future
reference, let us note some standard facts concerning elliptic functions :

• the functions ℘ and ℘′ are related by the differential equation :

(℘′(z))
2

= 4 (℘(z))
3 − g2℘(z)− g3;

where g2 = 60
∑
ω∈Ω\{0} ω

−4 and g3 = 140
∑
ω∈Ω\{0} ω

−6,

• the equation ℘(z) = ℘(w) holds if and only if either z +w = 0 (mod Ω) or
z − w = 0 (mod Ω),
• the function ℘ has two zeros, denoted d1 and d2, in C/Ω (see [4, 2] for

further information on their explicit computation)
• the roots of ℘′ are ω1

2 = 1
2 ,

ω2

2 = τ
2 and ω3

2 = 1+τ
2 , i.e. half periods.

• the addition formula of ℘, [8, pg. 157], reads :

℘(z1 + z2) =
1

4

(
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

)2

− ℘(z1)− ℘(z2).

Let us observe the following:

Lemma 3.1. If degree of ψ is even (resp. odd) then the cardinality of the inter-
section ψ−1(zo) ∩ {0, 1

2 ,
τ
2 ,

ω3

2 } is even (resp. odd) when zo is either a period or a
half period.

Proof. Say zo is either 0 or a half period. Let z ∈ ψ−1(zo) and w ∈ C with z+w = 0
(mod Ω). Then, w ∈ ψ−1(zo) because λ(z+w) = λz+λw = ψ(z) +ψ(w) ∈ Ω, and
−zo = zo (mod Ω). This means that the parity of the set ψ−1(zo) is determined
by the number |ψ−1(zo) ∩ {0, 1

2 ,
τ
2 ,

ω3

2 }|. We deduce the result using the fact that
ψ is unramified. �
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3.1. G ∼= Z/2Z. We have π = ℘ by Theorem 2.1. So the set of ramification values
of φ is a subset of R = {℘( 1

2 ), ℘( τ2 ), ℘(ω3

2 ), ℘(0) = ∞}. Remark that as λ is a

quadratic algebraic integer, |λ|2 ∈ Z. Let us first note the following :

Lemma 3.2. Let zo ∈ {0, 1
2 ,

τ
2 ,

ω3

2 } be an arbitrary element. Then ψ−1(zo) contains

exactly one element of {0, 1
2 ,

τ
2 ,

ω3

2 } whenever |λ|2 is odd.

Proof. We know that |ψ−1(zo)| is odd, therefore it has to contain an odd number of
elements from the set {0, 1

2 ,
τ
2 ,

ω3

2 }, by Lemma 3.1. Let z, w ∈ ψ−1(zo){0, 1
2 ,

τ
2 ,

ω3

2 }
be two elements. Then z = |λ|2z = λλz = λλw = |λ|2w = w in C/Ω. �

The following result gives a complete picture of the ramification data in this case
summarized in Table 2 :

Proposition 3.3. If deg(ψ) = |λ|2 = 4; then φ is ramified exactly over {℘(ωi/2)}
with the inverse image of each point containing 2 elements. If deg(ψ) = |λ|2 > 4 is
an even integer, then φ is ramified exactly over R with the numbers |φ−1(℘(ωi/2))|
being |λ|2/2 and |φ−1(∞)| being |λ|2/2 − 2. Otherwise, that is if |λ|2 is odd, then

φ is ramified exactly over R so that for any w ∈ R, |φ−1(w)| is |λ|
2−1
2 + 1.

Proof. Say |λ|2 is an odd integer. Then, for any zo ∈ {0, 1
2 ,

τ
2 ,

ω3

2 } there is exactly

one element of {0, 1
2 ,

τ
2 ,

ω3

2 }, say wo, in ψ−1(zo) (Lemma 3.2). For any element

z ∈ ψ−1(zo)\{wo} there is some w ∈ ψ−1(zo)\{wo} so that z+w = 0 in C/Ω. For

these two elements we have ℘(z) = ℘(w). This means that |φ−1(℘(zo))| = |λ|2−1
2 .

Suppose now that |λ|2 = 4. ψ−1(0) = {0, 1
2 ,

τ
2 ,

ω3

2 } and their images under ℘
are distinct, hence 0 is not a ramification point. However, for any ei ∈ C/Ω,
elements of ψ−1(ωi/2) can paired so that they add up to 0 ∈ C/Ω, and therefore
|℘(ψ−1(ωi/2))| = 2. Therefore |φ−1(℘(ωi/2))| is 2. More generally, if deg(ψ) > 4
and even then a similar diagram chasing argument leads to the fact that |φ−1(∞)| =
|λ|2

2 + 4, because in this case {0, 1
2 ,

τ
2 ,

ω3

2 } ⊂ ψ
−1(0). �

deg(ψ) |φ−1(℘(0))| |φ−1(℘(ei))|
4 4 2

even and > 4 |λ|2
2 + 2 |λ|2

2

odd |λ|2−1
2 + 1 |λ|2−1

2 + 1

Table 2. Ramification of Lattès maps corresponding to the group
G ∼= Z/2Z.

3.2. G ∼= Z/3Z. In order to admit an order 3 automorphism, Ω must be homothetic
to the Eisenstein lattice, Z[ζ3]. In this case, we have the identity ℘′′(z) = 6(℘(z))2.
For i = 1, 2 the differential equation satisfied by ℘ and ℘′ tells us that the value of
℘′ at di is ±

√
−g3. Remark that ℘′(d1) 6= ℘′(d2). Indeed, otherwise the degree 3

doubly periodic function F (z) = ℘′(z)−℘′(d1) would have two triple zeros, d1 and
d2. We conclude that φ is ramified at most over the set {℘′(d1), ℘′(d2), ℘′(0)}. The
following proposition gives the complete ramification behaviour in this case :

Proposition 3.4. Let φ : P1 → P1 be a Lattès map whose degree is 3. Then φ
is ramified exactly over the set {℘′(d1), ℘′(d2), ℘′(0)}. We refer to Table 3 for the
precise ramification data.
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|φ−1(∞)| |φ−1(℘′(d1))| |φ−1(℘′(d2))|
|ψ−1(0) ∩ {d1, d2}| = 2 |λ|2−3

3 + 3 |λ|2
3

|λ|2
3

|ψ−1(0) ∩ {d1, d2}| = 1 impossible

|ψ−1(0) ∩ {d1, d2}| = 0 |λ|2−1
3 + 1 |λ|2−1

3 + 1 |λ|2−1
3 + 1

Table 3. Ramification of Lattès maps corresponding to the group
G ∼= Z/3Z.

Proof. For brevity, let us only show that : |ψ−1(0) ∩ {d1, d2}| = 1 is not possible.
The proofs of the remaining cases have been exemplified in the proof of Proposi-
tion 3.3. Indeed, as a result of the fact that the sum of zeros (counting multiplicities)
of and elliptic function should be equal to the sum of poles (counting multiplicities),
we obtain d1 + d2 ≡ 0 (mod Ω). Say ψ(d1) = 0 (mod Ω). Then

ψ(d2) ≡ ψ(−d1) ≡ −ψ(d1) ≡ 0 (mod Ω).

�

3.3. G ∼= Z/4Z. This is possible only when the lattice Ω is homothetic to the
ring of Gaussian integers, Z[

√
−1]. To determine the ramification points of φ we

determine the zeros and poles of ℘ and ℘′, namely, 0, half periods, ωi

2 , i = 1, 2, 3,

and d1 and d2. As a result of the extra symmetry of ℘, i.e. ℘(
√
−1 z) = −℘(z), we

have d1 = d2 = ω3

2 and ℘( 1
2 ) = −℘(

√
−1
2 ). So, the set R = {℘2(0) = ∞, ℘2( 1

2 ) =

℘2(
√
−1
2 ), ℘2(ω3

2 ) = ℘2(d1) = ℘2(d2) = 0} is the set of all possible ramification

values of φ. We further have ψ−1(0) is the lattice generated by b+a
√
−1

a2+b2 and a−b
√
−1

a2+b2 ;

where λ = a+ b
√
−1. The set ψ−1({0, 1/2,

√
−1/2, (1 +

√
−1)/2}) is also a lattice,

denoted by Fλ, generated by halves of the generators of ψ−1(0). That is, ψ−1(0) =
2Fλ. To ease notation, elements of ψ−1(0) will be referred to as a vertices of type

×, elements of ψ−1( 1
2 )∪ψ−1(

√
−1
2 ) (or edge centers) will be referred to as vertices of

type ◦ and elements of ψ−1( 1+
√
−1

2 ) (or face centers) will be referred to as vertices
of type •.

The degree 4 morphism ℘2 : C/Z[
√
−1] → P1 can be described geometrically :

℘2 identifies the line segments [0, 1
2 ] and [ 1

2 ,
1+
√
−1

2 ] with [0,
√
−1
2 ] and [

√
−1
2 , 1+

√
−1

2 ],
respectively. To determine the exact ramification we will determine points of the
lattice Fλ that lies in [0, 1/2] × [0,

√
−1/2], which is denoted by Fλ,℘2 , paying

attention to their types. The points of the set ((0, 1/2)× (0,
√
−1/2)∩Fλ,℘2 will be

called interior lattice points, and points that are in ∂([0, 1/2]× [0,
√
−1/2])∩Fλ,℘2

are called boundary lattice points.
As Z[

√
−1] has a multiplication by

√
−1 symmetry, without loss of generality

we will assume that λ = a + b
√
−1, with a, b ≥ 0. We would like to remark that

elements of Fλ in the fundamental region of F = {z ∈ C | 0 ≤ Re(z), Im(z) ≤ 1} is
exactly the set of intersection points of the lines

2by = 2ax+ j; j = −2a, 1− 2a, . . . , 2b− 1, 2b, and

2ay = −2bx+ k; k = 0, 1, . . . , 2(a+ b)

We refer to Figure 1 for the case λ = 3 + 4
√
−1.

Let us collect some preliminary results :

(PR1) Types of vertices of Fλ,℘2 depends on the parities of the integers a and b.
Table 4 gives a summary where each claim can be seen by direct computa-
tion.
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Figure 1. Inverse image of the set ψ−1(0,∞, ℘2(1/2)) in Fλ for
λ = 3 + 4

√
−1: ×, ◦, • represents elements of ψ−1(0), ψ−1(1/2) =

ψ−1(
√
−1/2), ψ−1( 1+

√
−1

2 ), respectively.

a b 1
2 ∈

√
−1
2 ∈ 1+

√
−1

2 ∈
even even × × ×
even odd ◦ ◦ •
odd even ◦ ◦ •
odd odd • • ×

Table 4. Parities of a and b and values of ψ at half-periods.

(PR2) Each one of four line segments bounding the square [0, 1/2]×[0,
√
−1/2] can

contain at most 2 distinct vertex types. Indeed, parities of integral solution
of the equation a′α + b′β = 0 (where a = gcd(a, b)a′ and b = gcd(a, b)b′)
determines the type of the corresponding element Fλ,℘2 on the segment
[0, 1/2]. Precisely, the vertex is of type × (resp. •) if α and β are both even
(resp. odd). A vertex of type ◦ is on the segment [0, 1/2] if α and β have
opposite parities.

(PR3) if z is an element of Fλ,℘2 , then z + 1/2 and z +
√
−1/2 is also a vertex of

Fλ,℘2 . If a and b are both even then the type of the vertices z + 1/2 and

z+
√
−1/2 are the same as that of z. A vertex of type × becomes a vertex

of type ◦ if a and b are of opposite parities and a vertex of type • if both a
and b are odd. A vertex of type • becomes a vertex of type ◦ if a and b are
of opposite parities and a vertex of type × if both a and b are odd. A vertex
of type ◦ becomes a vertex of type × if a and b are of opposite parities.
We cannot have a vertex of type ◦ along the boundary in the other cases.
To exemplify the argument, let us suppose that a is even and b is odd with
z = p

q (with p, q ∈ Z and relatively prime) so that ψ(z) = 1/2, then we

must have : (a+ b
√
−1)pq = 1

2 implying apq ≡
1
2 (mod 1). This means 4|q,

as a is even. Therefore q is even. On the other hand, the vanishing of the
imaginary part implies q|b, which is a contradiction as b is odd. The other
cases are treated similarly.

(PR4) The family of lines 2by = 2ax+ j; j = 0, . . . , 2b−1, 2b divide [0, 1] into 2b
equal intervals, and the lines 2ay = −2bx+ k; k = 0, 1, . . . , 2a into 2a equal
intervals. In particular, an element of Fλ,℘2 is a point on [0, 1] whenever

0 ≤ γ
2a = δ

2b ≤ 1 for some non-negative integers γ and δ.
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Lemma 3.5. For λ = a + b
√
−1, we set d = gcd(a, b) and a = da′ and b = db′.

The number of vertices of types ×, ◦, • in Fλ,℘2 depends on the parities of a and b.
More precisely :

parities of
a and b

vertex
in

type × vertices type ◦ vertices type • vertices

both even
int a2+b2

4 − d+ 1
a2+b2

2
a2+b2

4 − d; a′, b′ odd
a2+b2

2 − d a2+b2

4 ; a′, b′ mixed

∂ 2d
0 2d; a′, b′ odd
2d 0; a′, b′ mixed

mixed
int a2+b2−2d+1

4
a2+b2−2d+1

2
a2+b2−2d+1

4
∂ d 2d d

both odd
int a2+b2+2

4 − d a2+b2

2
a2+b2+2

4 − d
∂ 2d 0 2d

Proof. We’ll first assume that both a and b are even. To determine the points of
Fλ,℘2 we’ll use Pick’s theorem, which predicts that given such a lattice polygon (i.e.
a polygon whose vertices are elements of the lattice) one has A = i+ j/2−1; where
A is the number of lattice squares in the polygon, i is the number of interior points
and j is the number of boundary points. Among these terms, remark first that

there are a2+b2

4 lattice squares because deg(ψ) = a2 + b2. (PR1) implies that the

vertices of Fλ,℘2 are exactly at 0, 1
2 ,
√
−1
2 , 1+

√
−1

2 . (PR3) implies that it is enough

to count the vertices along the segment [0, 1
2 ] to determine j. As discussed in (PR2)

such lattice points correspond to integral solutions of the equation a′α+b′β = 0 for

which the quantity b′α−a′β
2d((a′)2+(b′)2) ∈ [0, 1]. The method described in (PR4), which

counts the number of points on [0, 1], implies that the number of such solutions are
exactly 2 gcd(a, b) + 1. From here, we conclude that j = 4 gcd(a, b). We deduce

i = a2+b2

4 − 4d
2 + 1. As both a and b are even, z 7→ 1

2λz also defines a Lattès map

for which we have F 1
2λ
∩ F = Fλ,℘2 , therefore there are exactly a2+b2

4 many face

centers (vertices of type •) in Fλ,℘2 . Each edge of any square is incident to exactly

2 squares, therefore, in total there are a2+b2

2 many edge centers in Fλ,℘2 . Among
the face centers, only when a′ and b′ are both odd 2 gcd(a, b) of them lies on the
boundary of Fλ,℘2 . Otherwise, that is when a′ and b′ are of mixed parity there
are 2 gcd(a, b) many vertices of type ◦ on the boundary, see Figure 2. We obtain
the number of vertices of type × on the boundary as 2 gcd(a, b). So, we must have
a2+b2

4 − d+ 1-many interior lattice points of type ×.
In the case where both a and b are odd we first note that the boundary lattice
points can only be of type × and • and they always exist, but we cannot have any
vertex of type ◦ on the boundary. We pass to 2λ, and apply the results obtained
above to obtain the number of interior lattice points of F2λ,℘2 of type ×/◦/• as
a2 + b2 − 2d + 1/2(a2 + b2)/a2 + b2 − 2 gcd(a, b). The interior lattice points of
F2λ,℘2 contains 4 copies of interior lattice points of Fλ,℘2 and 4 copies of boundary
lattice points. Therefore, the number of interior lattice points of Fλ,℘2 must be
a2+b2−2d

4 − d−1
2 = a2+b2+2

4 − d. In a similar fashion, the number of points of type

•(resp. ◦) are counted as : a2+b2+2
4 − d (resp. a2+b2

2 ). For the final case where the
parities of a and b are opposite, one computes the points in Fλ,℘2 by comparing it
with F2λ,℘2 . We leave the proof to the reader as no new arguments are involved. �

The following result gives the precise ramification of Lattès maps in question :

Proposition 3.6. Let φ : P1 → P1 be a Lattès map with the degree of π being 4.
Then we have:
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Figure 2. The set Fλ,℘2 when λ = 6+10
√
−1 and λ = 2+8

√
−1,

respectively.

parities of
a and b

#φ−1(∞) #φ−1(℘2(1/2)) #φ−1(0)

both even a2+b2

4 + 2 a2+b2

2
a2+b2

4

mixed a2+b2+3
4

a2+b2+1
2

a2+b2+3
4

both odd a2+b2+2
4 + 1 a2+b2

2
a2+b2+2

4

Proof. Let us treat the case where both a and b are odd and leave the remainder
of the proof to the reader. We begin by noting that

#φ−1(∞) = #{℘2(z) | z is a vertex of type ×}.

By Lemma 3.5, there are a2+b2+2
4 − d many distinct images of vertices of type ×

which are in the interior. For the boundary lattice points, as a result of the proof
of Lemma 3.5 the 2d-many give rise to 2d−1

2 + 2 = d+ 1 distinct values under ℘2.

Again, using the fact that #φ−1(0) = #{℘2(z) | z is a vertex of type •}, we find

number the images inner lattice points as a2+b2+2
4 − d. Concerning the boundary

lattice points of type • we obtain 2d−1
2 + 1 = d. �

The norm 1 case, that is λ = ±1 or λ = ±
√
−1 does not lead to any interesting

Lattès map. For λ = ±1±
√
−1 is also not interesting for our purposes as in these

cases, the map φ is of degree 2 and by Proposition 3.6 φ is ramified exactly over 0
and ℘2(1/2). In all the remaining cases, φ has exactly 3 ramification values.

3.4. G ∼= Z/6Z. This is possible only when the lattice is Eisenstein integers, Z[ζ3].
The map π becomes ℘3. Candidates for ramification points are then 0, d1, d2,
ω1/2, ω2/2, ω3/2. We know, in this case that the zeroes d1, d2 of ℘ are distinct
and satisfy d1 + d2 ≡ 0 (mod Ω). Note that these zeroes are distinct from the half
periods ωi/2, for i = 1, 2, 3. In fact, an elementary computation shows that in this
case d1 = ω3/3 and therefore d2 = 2ω3/3. We also have ℘3(ωi/2) = g3/4, as g2 = 0.
Therefore, there are only 3 candidates for ramification values, namely ℘3(di) = 0,
℘3(ωi/2) = g3/4 and ℘3(0) =∞.

As the map ℘3 is invariant under the action of Z/6Z, which acts as multiplication
by exp(2π

√
−1)/6 on C/Z[ζ3], the set Fλ,℘3 becomes the finite closed region whose

boundary contains the lines arg(z) = 0, arg(z) = π/3, Re(z) = 1/2 and arg(z−1) =
2π/3, see Figure 3.

Figure 3. Shaded region is the fundamental region of ℘3.
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Figure 4. The set Fλ,℘3 when λ = 4 + 4ζ6, 4 + 2ζ6, 1 + 4ζ6, 2 +
3ζ6, 3 + 3ζ6, 1 + 3ζ6, respectively.

One may follow a line of reasoning similar to the Z/4Z case. More precisely,
vertices of the fundamental region of ℘3 is determined by values of a and b (mod 6).
(PR2) does not have an analogue in this case, see λ = 1 + 4ζ6 case in Figure 4.
(PR3) and (PR4) have analogues with small modifications. All these results lead
to a Lemma 3.5 type statement. Consequently, we obtain :

Proposition 3.7. Let φ : P1 → P1 be a Lattès map with the degree of π being 6.
Then we have:

parities of a and b #φ−1(∞) #φ−1(℘3(ωi/2)) #φ−1(0)

both even and a ≡ b (mod 6) a2+ab+b2

6 + 2 a2+ab+b2

2
a2+ab+b2

3

both even and a 6≡ b (mod 6) a2+ab+b2+8
6

a2+ab+b2

2
a2+ab+b2+2

3

mixed and b− a ≡ 3 (mod 6) a2+ab+b2+9
6

a2+ab+b2+1
2

a2+ab+b2

3

mixed and b− a 6≡ 3 (mod 6) a2+ab+b2+5
6

a2+ab+b2+1
2

a2+ab+b2+2
3

both odd and a ≡ b (mod 6) a2+ab+b2+9
6

a2+ab+b2+1
2

a2+ab+b2

3

both odd and a 6≡ b (mod 6) a2+ab+b2+5
6

a2+ab+b2+1
2

a2+ab+b2+2
3

The proof follows a similar reasoning as the proof of Proposition 3.7 and therefore
will be omitted.

When we eliminate the norm 1 case, in all the remaining cases, the map φ induced
by ℘3 has exactly 3 ramification values.

4. Examples

Recall that a map φ : X → P1; where X is an algebraic curve is called a Belyi
map if it is ramified at most over 3 points. As a result of Belyi’s celebrated theorem
such X admit a model over Q. Let us summarize the results obtained so far :

Theorem 4.1. Let φ : P1 → P1 be a Lattès map. If π = ℘, then φ is a Belyi map
if and only if deg(ψ) = 4. In all the remaining cases, i.e. when π = ℘′ or ℘2 or
℘3, φ is a Belyi map.
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4.1. G = Z/2Z. As noted above, the only possibility is the case when |λ| = 2. For
simplicity, let us choose ψ to be the multiplication by 2 map on C/Ω. Then, the
corresponding Lattès map becomes :

φ(x) = −2x+
1

4

(6x2 − g2
2 )2

4x3 − g2x− g3
;

where g2 and g3 are invariants of the corresponding elliptic curve.

4.2. G = Z/3Z. We consider ψ to be the multiplication by n map on C/Ω; where
Ω = Z[ζ3]. The corresponding Lattès map, denoted φ3,n, is ramified at most over
3 points, and hence a Belyi map. In fact, for any integer n, these Belyi Lattès
maps are visualized as gluing two copies of an equilateral triangle whose edges are
divided into n equal segments, see Figure 5.

Figure 5. First three subdivisions of an equilateral triangle.

The corresponding Belyi maps can be computed, using addition formula, as:

φ2(z) =
(z − 1)(z + 1)3

(2z − 1)3

φ3(z) =
(z3 + 3z2 − 6z + 1)3

z(z − 1)(z2 − z + 1)3

The following short list of Belyi maps are computed in PARI, [16]. The code is
available in author’s web page, using which, one may compute Belyi morphisms of
arbitrarily large degree.

φ3,4(z) =
(z − 2)3z(z4 + 10z3 − 12z2 + 4z − 2)3

(2z − 1)3(2z4 − 4z3 + 12z2 − 10z − 1)3

φ3,5(z) =
(z − 1)1(z8 + 17z7 − 107z6 + 164z5 − 155z4 + 164z3 − 107z2 + 17z + 1)3

(5z8 − 20z7 + 125z6 − 305z5 + 275z4 − 65z3 − 40z2 + 25z − 1)3

φ3,6(z) =
(z3 − 6z2 + 3z + 1)3(z9 + 36z8 − 99z7 + 165z6 − 387z5 + 666z4 − 564z3 + 225z2 − 45z + 1)3

(z − 2)3(z − 1)1(z)1(z + 1)3(2z − 1)3(z2 − z + 1)3(z6 − 3z5 + 60z4 − 115z3 + 60z2 − 3z + 1)3

We remark that each irreducible factor of the rational function φ4,n is defined
over a proper subfield of the 2n-division field of the corresponding elliptic curve,
which is in general not a Galois extension of Q.

4.3. G = Z/4Z. Let us again consider the multiplication by n map on C/Ω; where
Ω = Z[

√
−1]. The corresponding Belyi maps can be obtained by gluing two copies

of isosceles right triangle which is tiled using squares, see Figure 6.
Addition formula of the corresponding ℘ help one to compute these Belyi-Lattès

maps explicitly, as exemplified below.



BELYI LATTÈS MAPS 11

Figure 6. First three subdivisions of an isosceles right triangle.

φ4,2(z) =
(x + 1)4

(x− 1)2(x)1

φ4,3(z) =
(x)1(x2 + 6x− 3)4

(3x2 − 6x− 1)4

φ4,4(z) =
(x4 + 20x3 − 26x2 + 20x + 1)4

(x− 1)2(x)1(x + 1)4(x2 − 6x + 1)4

φ4,5(z) =
(x)1(x2 − 2x + 5)4(x4 + 52x3 − 26x2 − 12x + 1)4

(5x2 − 2x + 1)4(x4 − 12x3 − 26x2 + 52x + 1)4

φ4,6(z) =
(x + 1)4(x8 + 104x7 − 548x6 + 3032x5 − 4922x4 + 3032x3 − 548x2 + 104x + 1)4

(x− 1)2(x)1(x2 + 6x− 3)4(3x2 − 6x− 1)4(x4 − 28x3 + 6x2 − 28x + 1)4

4.4. G = Z/6Z. Let us again consider the multiplication by n map on C/Ω; where
Ω = Z[ζ3]. The corresponding Belyi maps can be obtained by tiling an equilateral
triangle by π/6-π/3-π/2 triangles. We exemplify below the corresponding Belyi-
Lattès maps

φ6,2(z) =
(x)1(x + 8)3

(x− 1)3

φ6,3(z) =
(x3 + 96x2 + 48x− 64)3

(x− 4)6(x)2

φ6,4(z) =
(x)1(x + 8)3(x4 + 536x3 − 1344x2 + 2048x− 512)3

(x− 1)3(x2 − 20x− 8)6

φ6,5(z) =
(x)1(x8 + 2080x7 + 50320x6 − 367040x5 + 2924800x4 − 3491840x3 + 2805760x2 − 1064960x− 327680)3

(5x4 − 380x3 − 240x2 + 1600x− 256)6

There are many interesting relations among the irreducible factors that appear
in the nominator and denominator of Belyi-Lattès maps. We leave such problems
to interested reader. As mentioned before, one prefers to study these maps as they
are easy to compute - relevant PARI/gp routines are available on authors web-page.
For instance, the computation of Belyi-Lattès map of degree 292 took 5min, 35,316
ms on an 8 year old laptop of 2,4 GHz Quad-Core Intel Core i7 processor with 8GB
memory. Notice that 29 is chosen in order to make sure that the nominator is an
irreducible polynomial of degree 292.

In the remaining cases the Belyi maps are parametrized by the lattices Ω =
Z[
√
−1] and Ω = Z[ζ3]. The map φ admits then the following general form :

φ(z) =

∏
zois a vertex of type •(z − zo)

deg(zo)∏
zois a vertex of type ×(z − zo)deg(zo)

.

Galois action on Belyi Lattès maps. Let us end the paper with a discussion of
the Galois action on Belyi Lattès maps. The advantage of Belyi Lattès maps over
other suggested families (e.g. trees, regular dessins, etc. ) lies in its computability,
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in the sense that one may explicitly write and study rigorously arbitrarily high
degree Belyi Lattès maps, using the general formula given above.

Notice that for λ = a+ b
√
−1 ∈ C satisfying λΩ ⊆ Ω, points of type •, ◦ and ×

are all torsion points. For instance, when Ω = Z[
√
−1] points of type • and ◦ are

of order 2|λ|2/ gcd(a, b) and points of type × are of order |λ|2/ gcd(a, b). To this
end, we let E be the elliptic curve whose j invariant is either 0 or 1728 and let λ be
an element in the endomorphism ring of E. We take K = Q(

√
−1) when j(E) = 0

and K = Q(
√
−3) when j(E) = 1728. We set nλ to be the smallest positive integer

so that elements of Fλ are a subset of the set of points of order nλ on E, that is the
set E[nλ]. The following result is a direct consequence of [11, Theorem 2 (pg.126)]:

Theorem 4.2. The field of definition of the corresponding Belyi Lattès map is a
subfield of the Ray class field of K of conductor nλ.

The Belyi Lattès maps arising from the sub-family of multiplication by n maps
gives rise to functions whose ramification set lies in a division field of ℘. This is in
a sense the optimal case as one has nλ = n and E[n] = Fλ. For n sufficiently large
these fields are Galois extensions of Q. The Galois groups are GL(2,Z/nZ), [15].
Acknowledgements. This research is funded by GSU Research Grant 16.504.004.
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