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1. A historic-cultural note - the battle on constructive and
non-constructive methods

Leopold Kronecker: Mathematical notions must be decidable in finitely many
steps.

Hermann Weyl: Mathematics is the science of infinity.

Algebra was traditionally based on constructive methods. Division algorithm,
Gaussian elimination method for solving a system of linear equations, and the gen-
eral elimination methods practiced in 19th century, are just a few examples of this
approach. Throughout more than the first half of the 20th century, while the mis-
sion of the leading experts in algebraic geometry was towards a solid foundation
for the subject, the common mentality was against constructive methods.

The story of “elimination of elimination theory” is well-known. D. Eisenbud
[Eisenbud 1998, p. 306] points out that, A. Weil in his influential book [Weil 1946,
p. 31], says “ The device that follows ..., it may be hoped finally eliminates from
algebraic geometry the last traces of Elimination Theory...”. This statement is
actually due to Claude Chevalley from his Princeton lectures [Weil 1946, p. 31,
The footnote]. It is therefore not surprising that, contrary to the earlier editions
[Van der Waerden 1953], in the preface of the fourth edition of his book Algebra
[Van der Waerden 1959], B. L. van der Waerden, influenced by other masters like
A. Weil, and C. Chevalley, writes “By omitting some material I have tried to keep
the size of the book within reasonable bound. Thus, the chapter “Elimination
Theory” has been omitted. The theorem on the existence of resultant system for
homogeneous equations, which was formerly proved by means of elimination theory,
now appears in Section 121 as a Corollary to Hilbert’s Nullstellensatz.”

Algebraic geometry is basically the study of the solutions of polynomial equa-
tions. Polynomial equations have been studied for a very long time, both theoret-
ically and with a view to solving them. Until recently, manual computation was
the only solution method and the theory was developed to accommodate it. With
the advent of computers, the situation changed dramatically; many classical results
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can be more usefully recast within a different framework which in turn lends itself
to further theoretical development tuned to computation.

The proof of the four color map theorem was the first major result to be proven
using a computer. The four color map theorem, states that, given any separation
of a plane into contiguous regions, producing a figure called a map, no more than
four colors are required to color the regions of the map so that no two adjacent
regions have the same color.

The four color theorem was proven in 1976 by Kenneth Appel and Wolfgang
Haken. Appel and Haken’s approach started by showing that there is a particular
set of 1,936 maps, each of which cannot be part of a smallest-sized counter-example
to the four color theorem. (If they did appear, you could make a smaller counter-
example.) Appel and Haken used a special-purpose computer program to confirm
that each of these maps had this property. Additionally, any map that could po-
tentially be a counter-example must have a portion that looks like one of these
1,936 maps. Showing this required hundreds of pages of hand analysis. Appel and
Haken concluded that no smallest counterexamples existed because any must con-
tain, yet not contain, one of these 1,936 maps. This contradiction means there are
no counterexamples at all and that the theorem is therefore true. Initially, their
proof was not accepted by all mathematicians because the computer-assisted proof
was infeasible for a human to check by hand (Swart 1980). Since then the proof
has gained wider acceptance, although doubts remain (Wilson 2002, 216222). To
dispel remaining doubt about the proof by Appel and Haken, a simpler proof using
the same ideas and still relying on computers was published in 1997 by Robertson,
Sanders, Seymour, and Thomas. Additionally in 2005, the theorem was proven
by Georges Gonthier with general purpose theorem proving software. For the full
story please see: http://en.wikipedia.org/wiki/Four-color-theorem.

Recent achievements on the proof of the Weak Goldbach Conjecture and progress
on infinity of primes with certain finite gap (the latest small gap being around 6000
but the goal is towards a gap of 2; the Twin Primes Conjecture) makes it very diffi-
cult to resist opposing the striking impact of computers on mathematics. This is not
only on the achievements but also on highly non-trivial theory-machine approach
in the proofs. In fact, confrontation between constructive and non-constructive
approaches has emerged to an advanced co-ordination reaching to the point of the
“state of the art”.

2. The first spark on computational methods in commutative algebra

During his research seminar in the Spring of 1964, Wolfgang Gröbner, a profes-
sor of Leopold-Franzens University, Innsbruck, proposed a problem which became
a Ph.D. thesis for Bruno Buchberger. The title of this thesis was: An Algorithm
for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional
Polynomial Ideal. A modified version of the abstract of this thesis is:

Let k be a field, and let I ⊂ k[x1, . . . , xn] be an ideal of height n so that the
residue class ring k[x1, . . . , xn]/I is a finite dimensional vector space. We find an
algorithm to compute a basis for this vector space from the generating polynomials
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of I. We find a termination criterion for this algorithm, and systematize it so that
it is suitable for implementation on an electronic computer. Certain inherent prop-
erties will also be presented, which suggest an application to the calculation of the
Hilbert function of an arbitrary polynomial ideal.

Buchberger’s thesis was the major step in establishing the foundation of com-
putational methods in commutative algebra and algebraic geometry. In fact, in his
thesis, Buchberger formulated the concept of Gröbner bases, found an algorithm to
compute them, and proved the fundamental theorem on which the correctness and
termination of the algorithm hinges.

For many years the importance of Buchberger’s work was not fully appreciated.
Only in the eighties did researchers in mathematics and computer science start a
deep investigation of the new theory. Many generalities and a wide variety of appli-
cations were developed. It has now become clear that the theory of Gröbner bases
can be widely used in many areas of science. The simplicity of its fundamental ideas
stands in stark contrast to its power and the breadth of its applications. Simplicity
and power: two ingredients which combine perfectly to ensure the continued success
of this theory. Gröbner Bases Theory, descends the study of polynomial ideals to
the study of monomial ideals. The structure of monomial ideals have combinatorial
nature and, in most cases, the original question on polynomial ideals, is much easier
to handle for monomial ideals.

Gröbner bases theory provides the foundation for many algorithms in algebraic
geometry and commutative algebra, with the Buchberger algorithm acting as the
engine that drives the computation. In view of ubiquity of scientific problems mod-
eled by polynomials, this subject is of interest not only to mathematics, but also
to an increasing number of scientists and engineers.

Buchberger’s thesis brought the revival of constructive methods in commutative
algebra and algebraic geometry. In fact, theoretically, the idea in a more general
setting, is due to Macaulay. To state Macaulay’s theorem, we first need to define
monomial orders and some related concepts.

Definition 2.1. Let R = k[x1, . . . , xn] be the polynomial ring over a field k. A
monomial order on R is a total order > on the monomials of R such that if m1,
m2 and m 6= 1 are monomials in R, then

m1 > m2 implies mm1 > mm2 > m2.

A simple but fundamental property of monomial orders is their Artinian property:

Lemma 2.2. (Artinian property of monomial orders) Let > be a monomial order
on R = k[x1, · · · , xn]. Every non-empty set of monomials has a least element with
respect to >.

Recall that by a term in R we mean a monomial in R multiplied by an scalar.
For f ∈ R a monomial in a term of f will be called a monomial of f .
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Definition 2.3. Let > be a monomial order on R = k[x1, · · · , xn] and let f ∈ R.
The initial term of f , denoted by in>(f), is the greatest term of f with respect to
>. If I is an ideal in R, then in>(I) is the ideal generated by in>(f) for all f ∈ I.

We will discuss monomial orders further. But, for the time being, let us recall a
typical monomial order on R; the lexicographic order:

xa11 · · ·xann > xb11 · · ·xbnn
if and only if ai > bi for the first index i with ai 6= bi.

Theorem 2.4. (Macaulay). Let I ⊂ R = k[x1, · · · , xn] be an ideal. For any
monomial order > on R, the set B of all monomials not in in>(I) forms a basis
for the (finite or infinite dimensional) vector space R/I.

It is not difficult to justify that a merely total order is not sufficient to produce
a basis, and it is necessary to use a monomial order.

Observe that in his thesis, Buchberger finds an algorithm to construct such a
basis when R/I is a finite dimensional vector space.

Here the concept of Gröbner basis shows up. The point is that if I is generated
by f1, · · · , ft, then in>(I) is not necessarily generated by in>(f1), · · · , in>(ft)!! If
a generating set of I satisfies this property, it is called a Gröbner basis. More
precisely:

Definition 2.5. Let I ⊂ R = k[x1, · · · , xn] be an ideal and let > be a monomial
order on R. A set of polynomials g1, · · · , gt in R is said to be a Gröbner basis for
I if in>(g1), · · · , in>(gt) generate in>(I).

It follows that if g1, · · · , gt is a Gröbner basis for I, then {g1, · · · , gt} is also a
generating set for I. This is immediate from the following simple but important
lemma.

Lemma 2.6. Let > be a monomial order on R = k[x1, · · · , xn] and let I ⊂ J ⊂ R
be two ideals in R such that in>(I) = in>(J). Then I = J .

A Gröbner basis g1, · · · , gt for an ideal I is called minimal if in>(g1), · · · , in>(gt)
is a minimal generating set for in>(I).

Observe that this does not mean that g1, · · · , gt is a minimal generating set for
I. In fact, in general, a Gröbner basis is not a minimal generating set for the ideal.

A Gröbner basis g1, · · · , gt for an ideal I is called reduced if

(i) in>(gi) does not divide any term of gj for i 6= j.

(ii) in>(gi) is a monomial (that is, the coefficient from k is 1).

Theorem 2.7. Reduced Gröbner basis exists and is unique.

Let’s give a simple example to show that if I is generated by f1, · · · , ft, then
in>(I) is not necessarily generated by in>(f1), · · · , in>(ft).
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Example 2.8. Let I be the ideal generated by f1 = x2, f2 = xy+y2 in R = k[x, y].
Let > be the lexicographic order on R with x > y. Then in>(f1) = x2 and in>(f2) =
xy. However, yf1− xf2 = −xy2 ∈ I and hence, yf2− xy2 = y3 ∈ I. Consequently,
y3 ∈ in>I but y3 does not belong to the ideal generated by in>(f1) = x2 and
in>(f2) = xy. In fact, as we will see later, here f1, f2, f3 = y3 is a Gröbner
basis for I.

3. Division Algorithm, Buchberger Criterion and Buchberger
algorithm

We now review the main items for construction of a Gröbner basis.

Theorem 3.1. (Division Algorithm). Let R = k[x1, · · · , xn] and let g1, · · · , gt
be some nonzero polynomials in R. Fix a monomial order > on R. Then given
0 6= f ∈ R, there exist polynomials f1, · · · , ft and f ′ in R with

f = f1g1 + · · ·+ ftgt + f ′ (1)

such that

(i) if f ′ 6= 0, then no monomial of f ′ is in the ideal (in>(g1), · · · , in>(gt)),

and

(ii) in>(f) ≥ in>(figi) for every i.

Any such f ′ is called a remainder of f with respect to g1, · · · , gt. The expression
(1) is called a standard expression of f in terms of g1, · · · , gt. One also says that
f reduces to f ′ with respect to g1, · · · , gt.

This is indeed a useful generalization of the usual division algorithm of polyno-
mials in one variable using the monomial order induced by degree.

Obviously, either a remainder nor a standard expression are unique. However, if
g1, · · · , gt is a Gröbner basis for I = (g1, · · · , gt) then the remainder is unique. See
[Herzog-Hibi 2011, Lemma 2.2.3].

Corollary 3.2. (Membership problem). If G = {g1, · · · , gt} is a Gröbner basis of
I = (g1, · · · , gt), then a nonzero polynomial f of R belongs to I if and only if the
unique remainder of f with respect to g1, · · · , gt is 0.

Proof. In fact, if f reduces to f ′ 6= 0, then f ′ ∈ I, and consequently, in>(f ′) ∈
in>I = (in>(g1), · · · , in>(gt)) which contradicts the conditions on the standard
expression. �

Recall that the membership problem is trivial in the case of monomial ideals.
This is in fact a basic property of monomial ideals: A polynomial f belongs to a
monomial ideal I if each term of f belongs I.
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Definition 3.3. (S-polynomials). Let > be a monomial order on R. For f ∈ S let
cf denote the coefficient of in>(f) in f . For f1, f2 ∈ R the expression

S(f1, f2) =
lcm(in>(f1), in>(f2))

cf1 in>(f1)
f1 −

lcm(in>(f1), in>(f2))

cf2 in>(f2)
f2

is called the S-polynomial of f1 and f2.

For fi, fj ∈ R, we will use the notation

mij =
lcm(in>(fi), in>(fj))

cfi in>(fi)
.

Now we state the Buchberger criterion which is considered the most important
theorem on Gröbner bases.

Theorem 3.4. (Buchberger Criterion). Let I be a none-zero ideal of R, and let
{g1, · · · , gt} be a system of generators of I. Then {g1, · · · , gt} is a Gröbner basis
of I if and only if S(gi, gj) reduces to zero with respect to g1, · · · , gt for all i 6= j.

In light of the Buchberger criterion, it is easy to forecast what Buchberger Algo-
rithm for constructing a Gröbner basis should be.

Theorem 3.5. (Buchberger Algorithm). Let I be a none-zero ideal of R, and let
g1, · · · , gt be a system of generators of I. Compute the remainder hij. If all the
hij = 0, then the gi’s form a Gröbner basis for I. If some hij 6= 0, then replace
g1, · · · , gt with g1, · · · , gt, hij and repeat the process. As the ideal generated by
g1, · · · , gt, hij is strictly larger than that generated by g1, · · · , gt, the process must
terminate after finitely many steps (since k[x1, . . . , xn] is a Noeterian ring!).

The following is immediate from the Buchberger algorithm.

Corollary 3.6. Let I be an ideal in R and let > be a monomial order on R. Then

(i) If I is homogenous then the reduced Gröbner basis of I with respect to >
consists of homogenous polynomials.

(i) If I is a binomial ideal then the reduced Gröbner basis of I with respect to >
consists of binomials.

Now we check the previous example using the Buchberger algorithm.

Example 3.7. Let I be the ideal generated by f1 = x2, f2 = xy+ y2 in R = k[x, y]
as discussed before. Let > be the lexicographic order on R with x > y. Then
in>(f1) = x2 and in>(f2) = xy.

S(f1, f2) =
lcm(in>(f1), in>(f2))

cf1 in>(f1)
f1 −

lcm(in>(f1), in>(f2))

cf2 in>(f2)
f2

=
x2y

x2
x2 − x2y

xy
(xy + y2) = −xy2 = −yf2 + y3.
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Since y3 is not a multiple of either initial forms, it is a remainder. Since it is non-
zero, f1, f2 is not a Gröbner basis. Thus we add g3 = y3 to the set of generators.
We get

S(f1, f3) =
lcm(in>(f1), in>(f3))

cf1 in>(f1)
f1−

lcm(in>(f1), in>(f3))

cf3 in>(f3)
f3 =

x2y3

x2
x2− x2y3

y3
y3

= 0.

S(f2, f3) =
lcm(in>(f2), in>(f3))

cf2 in>(f2)
f2 −

lcm(in>(f2), in>(f3))

cf3 in>(f3)
f3

=
xy3

xy
(xy + y2)− xy3

y3
y3 = y4 = yf3.

Therefore, S(fi, fj) reduces to zero with respect to f1, f2, f3 , and hence, f1, f2, f3
is Gröbner basis for I.

S-polynomials enjoy another distinguished property on the syzygy modules of a
Gröbner basis. In fact the initial letter S stands for syzygy a Turkish word meaning
YOKE.

Let g1, · · · , gt be a Gröbner basis for an ideal I ⊂ R = k[x1, · · · , xn] with respect
to some monomial order >. Let

S(gi, gj) = mijgi −mjigj −
∑
u

f (ij)u gu

be the S-polynomial of gi, gj with respect to g1, · · · , gt. Let F = Rt be the free
R-modules with basis elements ε1, · · · , εt. Consider the R-linear map

ϕ : F −→ I

defined by ϕ(εi) = gi. Then, Ker(ϕ) is the module of syzygies of g1, · · · , gt.

Theorem 3.8. (Schreyer) Let

τij = mijεi −mjiεj −
∑
u

f (ij)u εu.

Then, τij’s generate the module of syzygies of g1, · · · , gt.
In fact, with a suitable “monomial order” on F , τij’s form a Gröbner basis for the
module of syzygies. (see [Eisenbud 1998, 15.5]).

In the example above, τ12, τ13 and τ23 form a Gröbner basis for the module of
syzygies of f1, f2, f3.

4. Monomial orders, comparison of an ideal with its initial ideal,
and applications

Let R = k[x1, · · · , xn]. Recall that a monomial order on R is a total order > on
the monomials of R such that if m1, m2 and n 6= 1 are monomials in R, then

m1 > m2 implies nm1 > nm2 > m2.

We already saw the lexicographic order as a typical monomial order on R: Let
m = xa11 · · ·xann and n = xb11 · · ·xbnn . Then m >lex n if and only if ai > bi for the
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first index i with ai 6= bi.

Although there exist more general monomial orders, besides lexicographic or-
der, there are two other important monomial orders on R which are essential for
Gröbner bases computations: Homogenous lexicographic order and reverse lexico-
graphic order:

Definition 4.1. (Homogenous lexicographic order, or, degree lex order) Let m1 =

xa11 · · ·xann and m2 = xb11 · · ·xbnn . Then m1 >hlex m2 if and only if deg m1 > deg m2

or deg m1 = deg m2 and ai > bi for the first index i with ai 6= bi.

Definition 4.2. (Reverse lexicographic order) Let m1 = xa11 · · ·xann and m2 =

xb11 · · ·xbnn . Then m1 >rlex m2 if and only if deg m1 > deg m2 or deg m1 = deg m2

and ai < bi for the last index i with ai 6= bi.

Assume that if m1 and m2 are of the same degree. If we reverse the order on
variables to xn > xn−1 > · · · > x1 and use the lexicographic order induced by this

order of variables for m1 and m2, then xbnn · · ·x
b1
1 >lex x

an
n · · ·x

a1
1 if and only if

bi > ai for the first i (from the left) with ai 6= bi. The reverse lexicographic order
on m1 and m2 is the opposite of this order, and this is the reason for the name .

The two orders >lex and >hlex are different for monomials in more than one
variables. For example

x1x3 >hlex x
2
2

while
x22 >rlex x1x3.

Proposition 4.3. (Characterization of the properties of monomial orders) Let
f ∈ k[x1, · · · , xn]. Then

a. If in>lex
(f) ∈ k[xs, · · · , xn] for some s, then f ∈ k[xs, · · · , xn].

b. If f is homogenous and in>hlex
(f) ∈ k[xs, · · · , xn] for some s, then f ∈

k[xs, · · · , xn].
c. If f is homogenous and in>rlex

(f) ∈ (xs, · · · , xn) for some s, then f ∈
(xs, · · · , xn).

One of the main advantages of Gröbner bases is reduction of several proper-
ties of polynomial ideals to similar properties on monomial ideals, which are much
simpler in general. For example, computation of the Hilbert polynomial of a mono-
mial ideal, determining the intersection of two monomial ideals, are much simpler
compared to handling the same problems of polynomial ideals. This is done by
comparing an ideal I with its initial ideal in>(I). However, dealing with different
properties of ideals it may be necessary to use suitable monomial orders.

Before comparing some properties of I and in>(I), we need to recall some defi-
nitions.

Let M be a finitely generated graded R-module. A minimal free resolution of
M is an exact graded complex
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0 −→ Fp −→ · · · −→ F1 −→ F0 −→M −→ 0

where Fi = ⊕jR(−j)βij have the minimal possible rank and R(−j) is the ring
R considered as a graded module with degree shift by j. The numbers βij are
called Betti numbers of M . We now recall some important numerical invariants of
modules which can be easily computed for polynomial ideals and t heir quotients
using Gröbner bases.

Definition 4.4. (i) The projective dimension of M is

proj dim M = max {i : βij(M) 6= 0 for some j}.
(ii) The regularity of M is

reg M = max {j − i : βij(M) 6= 0 for some i}.

We will use these concepts when I is a homogenous ideal in R, hence I and R/I
may be considered as graded R-modules.

Theorem 4.5. Let I ⊂ R = k[x1, · · · , xn] be a homogenous ideal and let > be a
monomial order. Then

(i) The Hilbert function and the Hilbert polynomial of R/I and R/in>(I) are
equal.

(ii) dim R/I = dim R/in>(I) (dim is the Krull dimension).

(iii) proj dim R/I ≤ proj dim R/in>(I).

(iv) reg R/I ≤ reg R/in>(I).

(v) depth R/I ≥ depth R/in>(I).

Statements (ii) and (v) are also valid for non-homogenous ideals.

Also recall that a ring is Cohen-Macaulay if its depth is equal to its Krull di-
mension. A ring is Gorenstein if it is Cohen-Macaulay and the last nonzero Betti
number in its minimal free resolution is 1. The above theorem has very important
consequences regarding these tow type of rings.

Corollary 4.6. The ring R/I is Cohen-Macaulay (respectively Gorenstein) if R/in>(I)
has the corresponding property (see [Herzog-Hibi 2011, Corollary 3.3.5]).

We now review some important application of Gröbner bases. We begin with
elimination theory.

Recall that ifR = k[x1, · · · , xn and I ⊂ T = R[y1, · · · , ys] = k[x1, · · · , xn, y1, · · · , ys]
is an ideal, then I∩R is called the the elimination ideal (with respect to y1, · · · , ys).
In the case I is a monomial ideal generated by monomials m1, . . . ,mr the I ∩ R
is simply generated by those monomials among m1, . . . ,mr which do not involve
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y1, . . . , ys. Gröbner bases theory reduces computation of elimination for polynomial
ideals to the case of elimination for monomial ideals.

1. Elimination. Given an ideal I ⊂ T = R[y1, · · · , ys] = k[x1, · · · , xn, y1, · · · , ys],
we proceed to compute the elimination ideal I ∩R. It is enough to use a monomial
order on T satisfying

If f ∈ T and in>(f) ∈ R, then f ∈ R.

This is called an elimination order (with respect to y1, · · · , ys). For example, the
lexicographic order induced by y1 > · · · > ys > x1 > · · · > xn has this property.

Theorem 4.7. (Elimination) Let > be an elimination order on T = k[x1, · · · , xn, y1, · · · , ys]
with respect to y1, · · · , ys. If I ⊂ T is an ideal, then with respect to > on T and its
restriction on R,

in>(I ∩R) = in>(I) ∩R.
Further, if g1, · · · , gt is a Gröbner basis for I and g1, · · · , gu are those gi’s that do
not involve the variables y1, · · · , ys, then g1, · · · , gu form a Gröbner basis for I ∩R.

Let us see further nice applications of elimination ideals.

2. Intersection of two ideals. Let I, J ⊂ R be two ideals. One way to find I ∩J
is by elimination of new variable as follows. Let K = (y.I + (1 − y)J) considered
as an ideal in R[y]. Then it is immediate that

I ∩ J = K ∩R.
3. Kernel of a homomorphism between two polynomial rings. Let R =
k[x1, · · · , xn] and Q = k[y1, · · · , ys] be two polynomial rings. Let ϕ : R −→ Q be
a homomorphism defined by ϕ(xi) = fi ∈ Q. Let T = k[x1, · · · , xn, y1, · · · , ys] and
consider the ideal (f1 − x1, · · · , fn − xn) ⊂ T . Then it follows that, Ker ϕ is the
elimination ideal

Ker ϕ = (f1 − x1, · · · , fn − xn) ∩Q.

4. Equations of the image of an algebraic set under a morphism. Let
X ⊂ As be an affine algebraic set defined by an ideal J ⊂ k[y1, · · · , ys], and let
h : X −→ An be a morphism given by

a = (a1, · · · , as) 7→ (f1(a), · · · , fn(a))

where f1, · · · , fn ∈ S = k[y1, · · · , ys]/J . Find the defining ideal of the Zariski clo-
sure of the image of X under h.

Observe that if ϕ : R = k[x1, · · · , xn] −→ S = k[y1, · · · , ys]/J with ϕ(xi) = fi,
is the corresponding homomorphism, then Ker ϕ is the defining ideal of the Zariski
closure of h(X).

Let’s first assume that X = As, i.e., J = 0 and hence, fi ∈ S. Set T =
k[x1, · · · , xn, y1, · · · , ys] and consider the ideal (f1 − x1, · · · , fn − xn) ⊂ T . Then
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we have the same situation as the previous example. Hence,

Ker ϕ = (f1 − x1, · · · , fn − xn) ∩ S.

To settle the general case, setQ = k[y1, · · · , ys], and let Fi ∈ Q be the polynomial
that maps to fi ∈ S. Regarding Fi in T , let I ⊂ T be the ideal

I = J.T + (F1 − x1, · · · , Fn − xn).

Then,
Ker ϕ = I ∩ S.

(See [Eisenbud 1998, 15.30] for an easy proof.)

5. Projective closure of an affine set (homogenization of an ideal). Recall that
if I ⊂ R = k[x1, · · · , xn] is an ideal, then the homogenization of I in R[w] is the
ideal

Ih = ({fh : f ∈ I}) ⊂ R[w]

where
fh =

∑
j

wdeg f−jfj ,

with fj being the homogenous component of f of degree j. If X ⊂ An ⊂ Pn is the
algebraic set defined by I, then Ih is the defining ideal of the projective closure of
X in Pn. Recall that this is the smallest projective variety in Pn which contains X.

If I is generated by f1, · · · , ft, then in general, Ih may not be generated by
fh1 , · · · , fht . Using Gröbner basis, it is possible to find a generating set for Ih, in
fact even to get a Gröbner basis for Ih.

Let > be a monomial order on R such that for every monomials m1,m2 ∈ R, if
deg m1 > deg m2 then m1 > m2 (this is called a graded order). There is a natural
extension of a graded order > to a monomial order >′ on R[w].

m1w
a >′ m2w

b if and only if m1 > m2 or m1 = m2 and a > b.

Theorem 4.8. Let I ⊂ R be an ideal and let g1, · · · , gt be a Gröbner basis of I
with respect to a graded monomial order > on R. Then gh1 , · · · , ght is a Gröbner
basis for Ih ⊂ R[w] with respect to >′.

Example 4.9. (Twisted cubic curve). The affine twisted cubic curve parametrically
given as C = {(t, t2, t3) : t ∈ k} ⊂ A3. Thus its defining ideal is I = (g1, g2) ⊂
k[x, y, z] where g1 = x2 − y, g2 = xy − z . The projective twisted cubic curve X is
given by

Ih = (x2 − yw, xy − zw, xz − y2).

Hence, gh1 = x2 − yw, gh2 = xy − zw do not generate Ih.

Using homogenous lexicographic order on R induced by x > y > z we compute a
Gröbner basis for I. Thus,

in>(g1) = x2, in>(g2) = xy and
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S(g1, g2) = xz − y2.

Thus, we need to add g3 = xz − y2 to the generators. Then

in>(g3) = xz, and we get

S(g1, g3) = yg2 and

S(g2, g3) = y3 − z2.

This is also a remainder with respect to g1, g2, g3. Hence, we add g4 = y3 − z2 to
the generators. Then,

in>(g4) = y3, and we get

S(g1, g4) = z2g1 − yg4,

S(g2, g4) = zg3,

S(g3, g4) = z2g3 − y2g4.

Therefore, g1, g2, g3, g4 is a (reduced) Gröbner basis for I with respect to > and
hence

in>(I) = (x2, xy, xz, y3).

Now by the above theorem, {gh1 , gh2 , gh3 , gh4 } = {x2−yw, xy−zw, xz−y2, y3−z2w}
is a Gröbner basis for Ih with respect to >′.

Observe that Ih is generated by {x2 − yw, xy − zw, xz − y2}. However, this is
not a Gröbner basis for Ih with respect to >′.

With the sprit of the four color problem, a topic we discussed at the beginning,
we end these notes with an application of Gröbner basis on “graph coloring”, es-
sentially due to Bayer [Bayer 1982].

5. Graph colorings. We now see how one can apply Gröbner bases the-
ory for vertex coloring of a graph. Recall that a k-coloring of vertices of a graph
G = (V = {x1, . . . , xn}, E), is a map ϕ : V −→ {ξ1, ξ2, . . . , ξk} such that for each
{xi, xj} ∈ E, ϕ(xi) 6= ϕ(xj).

We limit to the case k = 3. The general case is almost similar. Assume that a
graph G = (V,E) is given. We like to color its vertices using 3 colors. This can be
seen as coloring a map with three colors. Each vertices of this graph represents a
country, and two vertices are connected by an edge if and only if the corresponding
countries are neighbors.

Let ξ ∈ C be the “primitive” third root of 1. Thus ξ3 = 1, and 1, ξ, ξ2 are three
distinct cubic roots of unity. To each vertex xi ∈ V one of the colors 1, ξ, ξ2 will be
assigned. Accordingly,

x3i − 1 = 0, 1 ≤ i ≤ n.
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Hence, x3i = x3j , 1 ≤ i, j ≤ n. If xi 6= xj are vertices of an edge, they should have

different colors. Since x3i = x3j , we have (xi − xj)(x2i + xixj + x2j ) = 0. Therefore,

xi, xj have different colors if and only if x2i + xixj + x2j = 0. Let I be the ideal〈
x3i − 1, x2i + xixj + x2j | 1 ≤ i, j ≤ n, {xi, xj} is an edge of G

〉
,

in C[x1, . . . , xn]. Now our problem can be interpreted as follows:

Theorem 4.10. The graph G is 3-colorable if and only if V (I) 6= ∅.

In other words, the above system of equations has a solution if and only if the
graph G is 3-colorable. But by the “Nullstellensatz” V (I) 6= ∅ if and only if any
1 does not belong to I, or equivalently, a Gröbner basis for I does not contain the
identity element 1.

To illustrate the procedure, let G be the following graph. Then the polynomials
corresponding to G are x3i − 1 = 0, 1 ≤ i ≤ n, and

{x2i + xixj + x2j : (i, j) ∈ G}.

Thus

I = 〈x3i − 1, x2i + xixj + x2j | 1 ≤ i ≤ 8, (i, j) ∈ {(1, 2), (1, 5), (1, 6), (2, 3), (2, 4),
(2, 8), (3, 4), (3, 8), (4, 5), (4, 7), (5, 6), (5, 7),
(6, 7), (7, 8)}〉.

A Gröbner basis for I in the polynomial ring C[x1, . . . , xn]with respect to the
lex order, with x1 > · · · > xn, is

G = {x38−1, x27−x7x8+x28, x1−x7, x2+x7+x8, x5+x7+x8, x3−x7, x4−x8, x6−x8}.

As it can bee seen, G does not contain 1, hence V (I) 6= ∅. Hence by above theorem,
G is 3-colorable. The system of equations given by the above Gröner bases, can be
easily solved and any of its solutions gives an explicit coloring.

Now let 1, ξ, ξ2 receive colors blue, green and red, respectively.

(1) Since x38−1 ∈ G, hence any one of the above colors will be the roots of this
polynomial. Let assign to x8 the color BLUE.

(2) Since x28+x7x8+x27 has two distinct roots, and since x8 and x7 are adjacent
hence we can assign the color GREEN to x7.

(3) Since x1 − x7 ∈ G, hence x1 has the same color as x7, i.e., GREEN.

(4) Since x3 − x7 ∈ G, hence x3 has the same color as x7, i.e., the color of x3
is GREEN.

(5) Since x2 + x7 + x8 ∈ G, x7, x8 are adjacent, x2, x8 also are adjacent, hence
the color of x2 would be RED.

(6) Since x5 + x7 + x8 ∈ G, by the same argument as (5), x5 would be RED.
(7) Since x4 − x8 ∈ G, hence x4 has then same color as x8, i.e., BLUE.
(7) And finally since x6 − x8 ∈ G, hence x6 has then same color as x8, i.e.,

BLUE.
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The GraphG

For further references, the web site of RISC is a very useful source the partici-
pants could visit: http://www.risc.jku.at/Groebner-Bases-Bibliography/.
This web site contains a list of several books and surveys on Gröbner Bases which
are certainly beyond this introductory course. However, a few chapters of the follow-
ing books (or chapters on Gröbner Bases) will be very helpful: [Adams-Loustaunau 1994],
[Eisenbud 1998], [Fröberg 1997], [Kreuzer-Robbiano 2000], [Becker-Weispfenning 1993],
[Cox-Little-O’Shea 1992], [Cox-Little-O’Shea 1998], [Gruel-Pfister 2002], and [Sturmfels 1995].

For using computer algebra systems for computations, three major computer
algebra packages are CoCoA [CoCoA 2014], Macaulay 2 [Macaulay 2 2014] and
Singular [Singular 2014].
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