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Hypergeometric Galois Actions



15. year of the conference
“Geometry and Arithmetic around Hypergeometric
Functions”, Galatasaray University, June 2005

Hypergeometric Galois Actions



The poster

;Hypergeometric Galois Actions



Talks of the 2005 meeting

D. Allcock: Real hyperbolic geometry in moduli problems
I. Dolgachev: Moduli spaces of K3 surfaces and complex ball quotients
R. P. Holzapfel: Orbital Varieties and Invariants
M. Jambu: Arrangements of Hyperplanes
A. Kasparian: On Holzapfel’s Conjecture on Ball-quotient surfaces
A. Kochubei: Hypergeometric functions and Carlitz differential equations over
function fields
S. Kondo: Complex ball uniformizations of the moduli spaces of del Pezzo
surfaces
E. Looijenga: Hypergeometric functions associated to arrangements
K. Matsumoto: Invariant functions with respect to the Whiteland link
H. Shiga: Hypergeometric functions and arithmetic geometric means
J. Stienstra: Gel’fand-Kapranov-Zelevinsky hypergeometric systems and their
role in mirror symmetry and in string theory
T. Terada: Hypergeometric representation of the group of pure braids
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Ortaköy excursion

;

Hypergeometric Galois Actions



Boat trip

;

Hypergeometric Galois Actions



Proceedings

;

Why not publish a sequel?

Why not organize a follow-up conference?
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My talk is an account of the project “Hypergeometric Galois Actions”,
published in 2015:
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email: isaglamtrfr@gmail.com

Abstract. We outline a project to study the Galois action on a class of modular
graphs (special type of dessins) which arise as the dual graphs of the sphere triangula-
tions of non-negative curvature, classified by Thurston. Because of their connections
to hypergeometric functions, there is a hope that these graphs will render them-
selves to explicit calculation for a study of Galois action on them, unlike the case of
a general dessin.
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Synopsis:

Thurston gave in the ’80s gave a very concrete and explicit
classification of sphere triangulations of non-negative curvature.
(related to the works of Picard, Terada, Deligne and Mostow on
Lauricella’s higher-dimensional hypergeometric functions)
The dual graph of every sphere triangulation is a kind of dessin and
determines a covering of the sphere branched at three points. This
covering is defined over Q. Grothendieck initiated a program to
study the action of the Galois group Gal(Q/Q) on these covers to
understand the structure of Gal(Q/Q).
This program have largely failed, because a general dessin is a
combinatorial object and it is hard to study them the point of view
of algebra and arithmetic.
Dessins originating from Thurston’s sphere triangulations are special
and there is a hope that they are amenable to study from the point
of view of the Galois action. This project turns out to be simpler
then expected.
There are various questions pertaining to these covers. Our aim is to
expose these questions and also suggest some ways to go beyond
these hypergeometric triangulations.
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Sphere triangulations

Given a triangulation of the sphere (or of any surface), we may identify
each triangle by the Euclidean equilateral triangle (Shabat-Voevodsky),
thereby obtaining a flat metric with some singular points on the sphere.

Simplest triangulations looks like this:

(imagine that two copies of the figures are glued along their boundaries)

Where are the singular points?

Note that these are obtained from the first triangulation by a subdivison
operation, which does not change the singular points.

Hypergeometric Galois Actions



Sphere triangulations

Given a triangulation of the sphere (or of any surface), we may identify
each triangle by the Euclidean equilateral triangle (Shabat-Voevodsky),
thereby obtaining a flat metric with some singular points on the sphere.

Simplest triangulations looks like this:

(imagine that two copies of the figures are glued along their boundaries)

Where are the singular points?

Note that these are obtained from the first triangulation by a subdivison
operation, which does not change the singular points.

Hypergeometric Galois Actions



Sphere triangulations

Given a triangulation of the sphere (or of any surface), we may identify
each triangle by the Euclidean equilateral triangle (Shabat-Voevodsky),
thereby obtaining a flat metric with some singular points on the sphere.

Simplest triangulations looks like this:

(imagine that two copies of the figures are glued along their boundaries)

Where are the singular points?

Note that these are obtained from the first triangulation by a subdivison
operation, which does not change the singular points.

Hypergeometric Galois Actions



Sphere triangulations

Given a triangulation of the sphere (or of any surface), we may identify
each triangle by the Euclidean equilateral triangle (Shabat-Voevodsky),
thereby obtaining a flat metric with some singular points on the sphere.

Simplest triangulations looks like this:

(imagine that two copies of the figures are glued along their boundaries)

Where are the singular points?

Note that these are obtained from the first triangulation by a subdivison
operation, which does not change the singular points.

Hypergeometric Galois Actions



Sphere triangulations

Here is a slightly more complicated triangulation:

Where are the singular points?

(there must be 12 singular points of the type above)
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Cone singularities of the metric

(If more then 6 triangles meet at a vertex, then the curvature is negative)
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HG triangulations are lattice points

Let C(1,9) be the complex Lorenz space, i.e. C10 with a Hermitian form
of signature (1,9).

Theorem (Thurston) There is a lattice L in C(1,9) and a group
ΓDM ⊂ Aut(L), such that sphere triangulations of curvature ≥ 0 are
elements of L+/ΓDM ,where L+ is the set of lattice points of positive
square-norm. The square norm of a lattice point is the number of
triangles in the triangulation. The action of ΓDM on complex projective
hyperbolic space CH9 (the unit ball in C9 ⊂ CP9) has quotient of finite
volume.

Denote by
Φ : CH9 →MDM := CH9/ΓDM

the quotient map. Its inverse is given by Lauricella hypergeometric
functions.

(“DM” stands for “Deligne-Mostow”)

We shall call these triangulations “HG triangulations”
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HG triangulations are lattice points

HG triangulations lying on the same line through the origin are
simultaneous subdivisions of a “primitive” triangulation on the line and
therefore define isometric polyhedra.
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HG triangulations are lattice points

Hence the projectivization

PL+/ΓDM ⊂MDM := CH9/ΓDM

classifies the isometry classes of polyhedra, where MDM is the
ball-quotient space CH9/ΓDM .

We shall call these “HG points” of the moduli space.

Thurston also describes a very explicit method to construct these
triangulations and gives the estimation O(n10) for the number of
triangulations in L+ with up to 2n triangles.
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Remark: Sphere quadrangulations

One may also consider sphere quadrangulations, assuming that each
quadrangle is an Euclidean square..

What are the singular points? Which ones are of positive, negative and
zero curvature?

Hypergeometric Galois Actions



HG Quadrangulations are lattice points

Theorem (Ayberk Zeytin) (Quadrangulations are lattice points) There is
a lattice L in complex Lorenz space C(1,8) and a group ΓDM of
automorphisms, such that quadrangulations of non-negative
combinatorial curvature are elements of L+/ΓDM , where L+ is the set of
lattice points of positive square-norm. The projective action of ΓDM on
complex projective hyperbolic space CH9 (the unit ball in C9 ⊂ CP9) has
quotient of finite volume. The square of the norm of a lattice point is the
number of quadrangles in the quadrangulation.

A HG sphere quadrangulation
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Triangulations are dessins

From a triangulation (blue) we produce a modular graph (red) (kind of
dessin) as follows:

This modular graph determines a covering of the sphere branched at
0, 1,∞, branched with index 1 or 2 above 0, with index 1 or 3 above 1.

For example, if the triangulation is just , then covering determined
by it, is Galois of degree 6.
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Triangulations are branched covers

If the triangulation is HG, then the branching above ∞ can have index
1,2,3,4,5 or 6.

Problem: Classify all covers f : P1 → P1 such that f has ramification
index 2 at each fiber above 0 ∈ P1, ramification index 3 at each fiber
above 1 ∈ P1 and has ki ≥ 0 points of ramification index i above ∞ ∈ P1

for i = 1, 2, 3, . . . .

Thurston’s classification of HG triangulations completely solves this
problem, under the assumption that ki = 0 for i ≥ 7.

This amounts to the classification of subgroups of the modular group
PSL2(Z) satisfying a certain regularity condition.
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Triangulations are branched covers
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Triangulations are branched covers

Suppose f is of degree d . The Riemann-Hurwitz formula yields

2 = e(P1) = d · e(P1\{0, 1,∞}) +
d

2
+

d

3
+

∞∑
i=1

ki = −d

6
+

∞∑
i=1

ki (1)

where e(P1\{0, 1,∞}) = −1 is the Euler characteristic. Since∑∞
i=1 iki = d , one has

∞∑
i=1

(6− i)ki = 12 (2)

Suppose ki = 0 for i ≥ 7 and note that the number k6 does not have any
effect in the above formula. The set of tuples (k1, . . . kn) satisfying the
formula is precisely the Deligne-Mostow list.
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Triangulations are branched covers
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A conjecture

We conjectured the following in 2015:

This conjecture have been proved in 2019 by Engels, who moreover
determined the fields of definition of the corresponding dessins

It turns out that they are not very interesting from the point of view of
Galois theory. So, one may declare the “hypergeometric Galois actions”
project a failure as well.
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Complex multiplication

Note the analogy with a result from class field theory: The modular
function j(τ) : H → C is algebraic on imaginary quadratic numbers τ
(complex multiplication points). In our case, τ is a lattice point, so it is
defined over Q[ζ6], and its image is defined over a maximal abelian
extension of Q[ζ6].

Shiga and Wohlfart studied the algebraic values of the map Φ and
obtained some results parallel with the class field theory.
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Beyond hypergeometric

It must be possible to extend the classification of results of triangulations
of non-negative curvature to more general triangulations (and
quadrangulations). To achieve this, we need the right conditions to
control the curvature. Some suggestions:

“just one point of negative curvature above infinity”

“just one point of negative curvature above infinity, whose curvature
is bounded below by κ ”,

“just one point of fixed curvature κ above infinity” (in each case,
the points of non-negative curvature are arbitrary).

A fixed number of points with controlled negative curvature.

These relaxed conditions may bring in non-discrete groups into the
picture, the signatures of the Hermitian forms will change, complex
hyperbolic structure will decay, and there is a possibility that the
parameter spaces will brake up into disconnected components.

One may also consider hyperbolic triangulations with cone points
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Beyond hypergeometric

If we further relax the control of the points of negative curvature by
simply requiring that it be bounded globally from below, then things will
totally go out of control.
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THANKS!
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