Rank Polynomials of Fence Posets are Unimodal (joint work with Mohan Ravichandran)

Ezgi KANTARCI OĞUZ

Boğaziçi University
İstanbul, Turkey

March 23, 2022

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ be a composition of n. The fence poset of α, denoted $F(\alpha)$ is the poset on $x_{1}, x_{2}, \ldots, x_{n+1}$ with the order relations:

$$
x_{1} \preceq x_{2} \preceq \cdots \preceq x_{\alpha_{1}+1} \succeq x_{\alpha_{1}+2} \succeq \cdots \succeq x_{\alpha_{1}+\alpha_{2}+1} \preceq x_{\alpha_{1}+\alpha_{2}+2} \preceq \cdots
$$

Example $(\alpha=(2,1,1,3))$

For a composition of n, we get a poset of $n+1$ nodes.

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

1 ideal of rank 0 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

1 ideal of rank 0, 3 ideals of rank 1 ,

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

1 ideal of rank 0,3 ideals of rank 1,5 ideals of rank $2, \ldots$

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

1 ideal of rank 0,3 ideals of rank 1,5 ideals of rank $2, \ldots$ $(1,3,5,6,6,5,3,2,1) \leftarrow$ Rank sequence.

An ideal of a fence is a down-closed subset: $x \in I, y \preceq x \Rightarrow y \in I$.

$$
\# I=\operatorname{rank}(I)
$$

Example $(\alpha=(2,1,1,3))$

1 ideal of rank 0,3 ideals of rank 1,5 ideals of rank $2, \ldots$
$(1,3,5,6,6,5,3,2,1) \leftarrow$ Rank sequence.
$1+3 q+5 q^{2}+6 q^{3}+6 q^{4}+5 q^{5}+3 q^{6}+2 q^{7}+q^{8} \leftarrow$ Rank polynomial.

A q-deformation for rational numbers

Recently, a q-deformation rational numbers was introduced by Morier-Genoud and Ovsienko ${ }^{1}$. Their definition has a convergence property, which allows us to extend them to real numbers.

[^0]
A q-deformation for rational numbers

Recently, a q-deformation rational numbers was introduced by Morier-Genoud and Ovsienko ${ }^{1}$. Their definition has a convergence property, which allows us to extend them to real numbers.

For a given rational number r / s, we first write it as a continued fraction.

$$
\begin{aligned}
& \frac{r}{s}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots \cdot+\frac{1}{a_{2 m}}}}}=c_{1}-\frac{1}{c_{2}-\frac{1}{c_{3}-\frac{1}{\ddots-\frac{1}{c_{k}}}}} \\
& a_{i} \in \mathbb{Z}, a_{i} \geq 1 \text { for } i \geq 2
\end{aligned} \quad c_{i} \in \mathbb{Z}, c_{i} \geq 2 \text { for } i \geq 2
$$

[^1]
A q-deformation for rational numbers

Then we replace the expansion terms with q-integers (q^{-1}-integers for $a_{2 k}$), and the 1 's with powers of q.

A q-deformation for rational numbers

Then we replace the expansion terms with q-integers (q^{-1}-integers for $a_{2 k}$), and the 1 's with powers of q.

$$
\left[\frac{r}{s}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\ddots \cdot+\frac{q^{a_{2 m-1}}}{\left[a_{2 m}\right]_{q^{-1}}}}}=\left[c_{1}\right]_{q}-\frac{q^{c_{1}-1}}{\left[c_{2}\right]_{q}-\frac{q^{c_{2}-1}}{\ddots-\frac{q^{c_{k-1}-1}}{\left[c_{k}\right]_{q}}}}
$$

A cool thing: The two expressions give the same q-deformation.

Then we replace the expansion terms with q-integers (q^{-1}-integers for $a_{2 k}$), and the 1 's with powers of q.

$$
\left[\frac{r}{s}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\ddots+\frac{q^{a_{2 m-1}}}{\left[a_{2 m}\right]_{q^{-1}}}}}=\left[c_{1}\right]_{q}-\frac{q^{c_{1}-1}}{\left[c_{2}\right]_{q}-\frac{q^{c_{2}-1}}{\ddots-\frac{q^{c_{k-1}-1}}{\left[c_{k}\right]_{q}}}}
$$

A cool thing: The two expressions give the same q-deformation. Another cool thing: $\left[\frac{r}{s}\right]_{q}=\frac{R(q)}{S(q)}$ where $R(q), S(q) \in \mathbb{Z}[q]$ are polynomials that evaluate to r and s respectively.

Then we replace the expansion terms with q-integers (q^{-1}-integers for $a_{2 k}$), and the 1 's with powers of q.

$$
\left[\frac{r}{s}\right]_{q}:=\left[a_{1}\right]_{q}+\frac{q^{a_{1}}}{\left[a_{2}\right]_{q^{-1}}+\frac{q^{-a_{2}}}{\ddots+\frac{q^{a_{2 m-1}}}{\left[a_{2 m}\right]_{q^{-1}}}}}=\left[c_{1}\right]_{q}-\frac{q^{c_{1}-1}}{\left[c_{2}\right]_{q}-\frac{q^{c_{2}-1}}{\ddots-\frac{q^{c_{k-1}-1}}{\left[c_{k}\right]_{q}}}}
$$

A cool thing: The two expressions give the same q-deformation.
Another cool thing: $\left[\frac{r}{s}\right]_{q}=\frac{R(q)}{S(q)}$ where $R(q), S(q) \in \mathbb{Z}[q]$ are polynomials that evaluate to r and s respectively.

Also, when $\frac{r}{s} \geq 0$ the coefficients are non-negative.

Example

$$
\frac{32}{9}=3+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}=4-\frac{1}{3-\frac{1}{2-\frac{1}{2-\frac{1}{2}}}}
$$

Example

$$
\frac{32}{9}=3+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}=4-\frac{1}{3-\frac{1}{2-\frac{1}{2-\frac{1}{2}}}}
$$

$$
\left[\frac{32}{9}\right]_{q}=[3]_{q}+\frac{q^{3}}{[1]_{q^{-1}}+\frac{q^{-1}}{[1]_{q}+\frac{q}{[4]_{q^{-1}}}}}=[4]_{q}-\frac{q^{4}}{[3]_{q}-\frac{q^{3}}{[2]_{q}-\frac{q^{2}}{[2]_{q}-\frac{q^{2}}{[2]_{q}}}}}
$$

Example

$$
\frac{32}{9}=3+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}=4-\frac{1}{3-\frac{1}{2-\frac{1}{2-\frac{1}{2}}}}
$$

$$
\left[\frac{32}{9}\right]_{q}=[3]_{q}+\frac{q^{3}}{[1]_{q^{-1}}+\frac{q^{-1}}{[1]_{q}+\frac{q}{[4]_{q^{-1}}}}}=[4]_{q}-\frac{q^{4}}{[3]_{q}-\frac{q^{3}}{[2]_{q}-\frac{q^{2}}{[2]_{q}-\frac{q^{2}}{[2]_{q}}}}}
$$

$$
\left[\frac{32}{9}\right]_{q}=\frac{1+3 q+5 q^{2}+6 q^{3}+6 q^{4}+5 q^{5}+3 q^{6}+2 q^{7}+q^{8}}{1+2 q+2 q^{2}+2 q^{3}+q^{4}+q^{5}}
$$

Example

$$
\left[\frac{32}{9}\right]_{q}=[3]_{q}+\frac{q^{3}}{[1]_{q^{-1}}+\frac{q^{-1}}{[1]_{q}+\frac{q}{[4]_{q^{-1}}}}}=[4]_{q}-\frac{q^{4}}{[3]_{q}-\frac{q^{3}}{[2]_{q}-\frac{q^{2}}{[2]_{q}-\frac{q^{2}}{[2]_{q}}}}}
$$

$$
\left[\begin{array}{c}
r \\
s
\end{array}\right]_{q}=\frac{\text { Rank polynomial for }(2,1,1,3)}{\text { Rank polynomial for }(1,3)}
$$

Example

$$
\left[\frac{32}{9}\right]_{q}=[3]_{q}+\frac{q^{3}}{[1]_{q^{-1}}+\frac{q^{-1}}{[1]_{q}+\frac{q}{[4]_{q^{-1}}}}}=[4]_{q}-\frac{q^{4}}{[3]_{q}-\frac{q^{3}}{[2]_{q}-\frac{q^{2}}{[2]_{q}-\frac{q^{2}}{[2]_{q}}}}}
$$

$$
\left[\frac{r}{s}\right]_{q}=\frac{\text { Rank polynomial for }(2,1,1,3)}{\text { Rank polynomial for }(1,3)}
$$

In general, if r / s corresponds to $\left[a_{1}, a_{2}, \ldots, a_{2 m}\right]$, we have

$$
\left[\frac{r}{s}\right]_{q}=\frac{\text { Rank polynomial for }\left(a_{1}-1, a_{2}, a_{3}, \ldots, a_{2 m}-1\right)}{\text { Rank polynomial for }\left(0, a_{2}-1, a_{3}, \ldots, a_{2 m}-1\right)}
$$

$$
\begin{aligned}
(2,1,1,3) & \rightarrow(1,3,5,6,6,5,3,2,1) \\
(3,1,1,2) & \rightarrow(1,2,3,5,6,6,5,3,1) \\
(1,2,1,3) & \rightarrow(1,3,5,6,6,5,4,2,1) \\
(1,1,2,3) & \rightarrow(1,3,5,7,7,5,4,2,1) \\
(2,2,3) & \rightarrow(1,2,4,5,6,6,4,2,1) \\
(2,3,2) & \rightarrow(1,2,4,6,7,6,4,2,1) \\
(2,1,4) & \rightarrow(1,2,3,3,4,4,3,2,1) \\
(2,1,2,1,1) & \rightarrow(1,3,6,7,8,7,5,3,1)
\end{aligned}
$$

$$
\begin{aligned}
(2,1,1,3) & \rightarrow(1,3,5,6,6,5,3,2,1) \\
(3,1,1,2) & \rightarrow(1,2,3,5,6,6,5,3,1) \\
(1,2,1,3) & \rightarrow(1,3,5,6,6,5,4,2,1) \\
(1,1,2,3) & \rightarrow(1,3,5,7,7,5,4,2,1) \\
(2,2,3) & \rightarrow(1,2,4,5,6,6,4,2,1) \\
(2,3,2) & \rightarrow(1,2,4,6,7,6,4,2,1) \\
(2,1,4) & \rightarrow(1,2,3,3,4,4,3,2,1) \\
(2,1,2,1,1) & \rightarrow(1,3,6,7,8,7,5,3,1)
\end{aligned}
$$

Conjecture (Morier-Genoud, Ovsienko, 2020)

The rank polynomials of fence posets are unimodal.

What more can we say?
Consider $(2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1)$.

Consider $(2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1)$.
We have $1 \leq 1 \leq 2 \leq 3 \leq 3 \leq 5 \leq 5 \leq 6 \leq 6$.
We call such a sequence bottom-interlacing:

$$
\begin{equation*}
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq \ldots \leq a_{\lfloor n / 2\rfloor} \tag{BI}
\end{equation*}
$$

Consider $(2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1)$.
We have $1 \leq 1 \leq 2 \leq 3 \leq 3 \leq 5 \leq 5 \leq 6 \leq 6$.
We call such a sequence bottom-interlacing:

$$
\begin{equation*}
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq \ldots \leq a_{\lfloor n / 2\rfloor} \tag{BI}
\end{equation*}
$$

We call similarly have top-interlacing sequences:

$$
\begin{equation*}
a_{0} \leq a_{n} \leq a_{1} \leq a_{n-1} \leq \ldots \leq a_{\lceil n / 2\rceil} . \tag{TI}
\end{equation*}
$$

Consider $(2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1)$.
We have $1 \leq 1 \leq 2 \leq 3 \leq 3 \leq 5 \leq 5 \leq 6 \leq 6$.
We call such a sequence bottom-interlacing:

$$
\begin{equation*}
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq \ldots \leq a_{\lfloor n / 2\rfloor} \tag{BI}
\end{equation*}
$$

We call similarly have top-interlacing sequences:

$$
\begin{equation*}
a_{0} \leq a_{n} \leq a_{1} \leq a_{n-1} \leq \ldots \leq a_{\lceil n / 2\rceil} . \tag{TI}
\end{equation*}
$$

For example, the rank sequence $(1,2,4,5,6,6,4,2,1)$ of $(2,2,3)$ is top interlacing:

$$
1 \leq 1 \leq 2 \leq 2 \leq 4 \leq 4 \leq 5 \leq 6 \leq 6
$$

$$
\begin{aligned}
(2,1,1,3) & \rightarrow(1,3,5,6,6,5,3,2,1) \rightarrow \mathrm{BI} \\
(3,1,1,2) & \rightarrow(1,3,5,6,6,5,3,2,1) \rightarrow \mathrm{BI} \\
(1,2,1,3) & \rightarrow(1,3,5,6,6,5,4,2,1) \rightarrow \mathrm{BI} \\
(1,1,2,3) & \rightarrow(1,3,5,7,7,5,4,2,1) \rightarrow \mathrm{BI} \\
(2,2,3) & \rightarrow(1,2,4,5,6,6,4,2,1) \rightarrow \mathrm{TI} \\
(2,3,2) & \rightarrow(1,2,4,6,7,6,4,2,1) \rightarrow \mathrm{BI}, \mathrm{TI} \text { (symmetric) } \\
(2,1,4) & \rightarrow(1,2,3,3,4,4,3,2,1) \rightarrow \mathrm{TI} \\
(2,1,2,1,1) & \rightarrow(1,3,6,7,8,7,5,3,1) \rightarrow \mathrm{BI}
\end{aligned}
$$

$$
\begin{aligned}
& (2,1,1,3) \rightarrow(1,3,5,6,6,5,3,2,1) \rightarrow \mathrm{BI} \\
& (3,1,1,2) \rightarrow(1,3,5,6,6,5,3,2,1) \rightarrow \mathrm{BI} \\
& (1,2,1,3) \rightarrow(1,3,5,6,6,5,4,2,1) \rightarrow \mathrm{BI} \\
& (1,1,2,3) \rightarrow(1,3,5,7,7,5,4,2,1) \rightarrow \mathrm{BI}
\end{aligned}
$$

$$
\begin{aligned}
(2,2,3) & \rightarrow(1,2,4,5,6,6,4,2,1) \rightarrow \mathrm{TI} \\
(2,3,2) & \rightarrow(1,2,4,6,7,6,4,2,1) \rightarrow \mathrm{BI}, \mathrm{TI} \text { (symmetric) } \\
(2,1,4) & \rightarrow(1,2,3,3,4,4,3,2,1) \rightarrow \mathrm{TI} \\
(2,1,2,1,1) & \rightarrow(1,3,6,7,8,7,5,3,1) \rightarrow \mathrm{BI}
\end{aligned}
$$

Conjecture (McConville, Sagan, Smyth, 2021²)

Suppose $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$.
(a) If $s=1$ then $r(\alpha)=(1,1, \ldots, 1)$ is symmetric.
(b) If s is even, then $r(\alpha)$ is bottom interlacing.
(c) If $s \geq 3$ is odd we have:
(i) If $\alpha_{1}>\alpha_{s}$ then $r(\alpha)$ is bottom interlacing.
(ii) If $\alpha_{1}<\alpha_{s}$ then $r(\alpha)$ is top interlacing.
(iii) If $\alpha_{1}=\alpha_{s}$ then $r(\alpha)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{s-1}\right)$ is symmetric, top interlacing, or bottom interlacing, respectively.

[^2]What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

The circular fence has rank sequence $(1,2,3,4,4,3,2,1)$.

What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

The circular fence has rank sequence ($1,2,3,4,4,3,2,1$). It is symmetric. Is this always so?

What if we close up the fence?
Example $(\alpha=(2,1,1,3))$

The circular fence has rank sequence (1, 2, 3, 4, 4, 3, 2, 1). It is symmetric. Is this always so?

Answer: Yes, but it is not trivial to prove.

Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

[^3]
Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

Our proof:

We have one case that is trivially symmetric: $(k, 1,1, \ldots, 1)$.

We show that moving a node from one segment to the next does not break symmetry.

[^4]
Theorem (Kantarcı Oğuz, Ravichandran, 2021³)

Rank polynomials of circular fence posets are symmetric.

Our proof:

We have one case that is trivially symmetric: $(k, 1,1, \ldots, 1)$.

We show that moving a node from one segment to the next does not break symmetry.
$\geq>$ Recent bijective proof by Sagan and Elizalde ${ }^{4}$.
${ }^{3}$ Kantarcı Oğuz and Ravichandran, Rank Polynomials of Fence Posets are Unimodal.
${ }^{4}$ Elizalde and B. Sagan, Partial rank symmetry of distributive lattices for fences.

There are several natural ways to associate a circular fence to a given fence.

The next step

There are several natural ways to associate a circular fence to a given fence.

Example (Adding the relation $x_{1} \succeq x_{8}$)

There are several natural ways to associate a circular fence to a given fence.

Example (Adding the relation $x_{1} \succeq x_{8}$)

$$
\sum_{I} q^{\operatorname{rank}(I)}=\sum_{\left\{I \mid x_{1} \in I \Rightarrow x_{8} \in I\right\}} q^{\operatorname{rank}(I)}+\sum_{\left\{I \mid x_{1} \in I, x_{8} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

There are several natural ways to associate a circular fence to a given fence.

Example (Adding the relation $x_{1} \succeq x_{8}$)

$$
\sum_{I} q^{\operatorname{rank}(I)}=\sum_{\left\{I \mid x_{1} \in I \Rightarrow x_{8} \in I\right\}} q^{\operatorname{rank}(I)}+\sum_{\left\{I \mid x_{1} \in I, x_{8} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

There are several natural ways to associate a circular fence to a given fence.

Example (Adding the relation $x_{1} \succeq x_{8}$)

$$
\sum_{I} q^{\operatorname{rank}(I)}=\sum_{\left\{I \mid x_{1} \in I \Rightarrow x_{8} \in I\right\}} q^{\operatorname{rank}(I)}+\sum_{\left\{I \mid x_{1} \in I, x_{8} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

There are several natural ways to associate a circular fence to a given fence.

Example (Adding the relation $x_{1} \succeq x_{8}$)

$$
\sum_{I} q^{\operatorname{rank}(I)}=\sum_{\left\{I \mid x_{1} \in I \Rightarrow x_{8} \in I\right\}} q^{\operatorname{rank}(I)}+\sum_{\left\{I \mid x_{1} \in I, x_{8} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

circular rank polynomial
$q \times$ rank polynomial for $(1,1)$

There are several natural ways to associate a circular fence to a given fence.

Example (Adding the relation $x_{1} \succeq x_{8}$)

$$
\sum_{I} q^{\operatorname{rank}(I)}=\sum_{\left\{I \mid x_{1} \in I \Rightarrow x_{8} \in I\right\}} q^{\operatorname{rank}(I)}+\sum_{\left\{I \mid x_{1} \in I, x_{8} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

circular rank polynomial (symmetric)
$q \times$ rank polynomial for $(1,1)$
(smaller, shifted center)
symmetric piece

smaller piece, shifted center
$\sum_{l} q^{\operatorname{rank}(I)}$
$(1,2,3,5,5,5,3,2,1) \quad b_{0}=b_{n}, b_{1}=b_{n-1}, \cdots$ $+$
$(0,1,2,1,1,0,0,0,0) \quad c_{0} \geq c_{n}, c_{1} \geq c_{n-1}, \ldots$
$(1,3,5,6,6,5,3,2,1) \quad a_{0} \geq a_{n}, a_{1} \geq a_{n-1}, \ldots$
symmetric piece +
smaller piece, shifted center

$$
\sum_{l} q^{\operatorname{rank}(I)} \quad(1,3,5,6,6,5,3,2,1) \quad a_{0} \geq a_{n}, a_{1} \geq a_{n-1}, \ldots
$$

$(1,2,3,5,5,5,3,2,1) \quad b_{0}=b_{n}, b_{1}=b_{n-1}, \cdots$ $+$
$(0,1,2,1,1,0,0,0,0) \quad c_{0} \geq c_{n}, c_{1} \geq c_{n-1}, \ldots$

This gives us half of the equations for being bottom interlacing:

$$
a_{n} \leq a_{0}, \quad a_{n-1} \leq a_{1}, \quad a_{n-2} \leq a_{2} \quad a_{n-3} \leq a_{3}, \ldots
$$

symmetric piece +
smaller piece, shifted center

$$
\sum_{l} q^{\operatorname{rank}(I)} \quad(1,3,5,6,6,5,3,2,1) \quad a_{0} \geq a_{n}, a_{1} \geq a_{n-1}, \ldots
$$

$(1,2,3,5,5,5,3,2,1) \quad b_{0}=b_{n}, b_{1}=b_{n-1}, \cdots$ $+$
$(0,1,2,1,1,0,0,0,0) \quad c_{0} \geq c_{n}, c_{1} \geq c_{n-1}, \ldots$

This gives us half of the equations for being bottom interlacing:

$$
a_{n} \leq a_{0}, \quad a_{n-1} \leq a_{1}, \quad a_{n-2} \leq a_{2} \quad a_{n-3} \leq a_{3}, \ldots
$$

$$
\begin{equation*}
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq a_{n-2} \leq a_{2} \leq a_{n-3} \leq a_{3} \leq \ldots \tag{BI}
\end{equation*}
$$

What does this tell us about the rank polynomial?

symmetric piece $\quad(1,2,3,5,5,5,3,2,1) \quad b_{0}=b_{n}, b_{1}=b_{n-1}, \ldots$ +
smaller piece, $+$ shifted center

$$
\sum_{l} q^{\mathrm{rank}(I)}
$$

$(0,1,2,1,1,0,0,0,0) \quad c_{0} \geq c_{n}, c_{1} \geq c_{n-1}, \ldots$

This gives us half of the equations for being bottom interlacing:

$$
\begin{gather*}
a_{n} \leq a_{0}, \quad a_{n-1} \leq a_{1}, \quad a_{n-2} \leq a_{2} \quad a_{n-3} \leq a_{3}, \ldots \\
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq a_{n-2} \leq a_{2} \leq a_{n-3} \leq a_{3} \leq \ldots \tag{BI}
\end{gather*}
$$

We need a way to shift the pairings to $\left(a_{0}, a_{n-1}\right),\left(a_{1}, a_{n+1}\right), \ldots$ to get the rest of the inequalities.

Let us associate another circular fence to our fence.

Example (Connecting x_{8} and x_{1} by a minimal node x_{0})

Let us associate another circular fence to our fence.

Example (Connecting x_{8} and x_{1} by a minimal node x_{0})

$$
\sum_{\left\{I \mid x_{0} \in I\right\}} q^{\operatorname{rank}(I)}=\sum_{I} q^{\operatorname{rank}(I)} \sum_{\left\{I \mid x_{0} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

Let us associate another circular fence to our fence.

Example (Connecting x_{8} and x_{1} by a minimal node x_{0})

$$
\sum_{\left\{I \mid x_{0} \in I\right\}} q^{\operatorname{rank}(I)}=\sum_{I} q^{\text {rank }(I)}-\sum_{\left\{I \mid x_{0} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

$q \times$ rank
polynomial for (2, 1, 1, 3)
circular rank polynomial
rank polynomial for (0)

Let us associate another circular fence to our fence.

Example (Connecting x_{8} and x_{1} by a minimal node x_{0})

$$
\sum_{\left\{I \mid x_{0} \in I\right\}} q^{\operatorname{rank}(I)}=\sum_{I} q^{\operatorname{rank}(I)}-\sum_{\left\{I \mid x_{0} \notin I\right\}} q^{\operatorname{rank}(I)}
$$

$q \times$ rank
polynomial for $(2,1,1,3)$
circular rank polynomial (symmetric, shifted center)
rank polynomial for (0) (smaller, shifted center)

On the rank polynomial side

symmetric piece
$(1,2,3,5,6,6,5,3,2,1) \quad b_{0}=b_{n+1}, b_{1}=b_{n}, \ldots$
larger
smaller piece,
$(1,1,0,0,0,0,0,0,0)$
$c_{0} \geq c_{n}, c_{1} \geq c_{n-1}, \ldots$
shifted center
$\left(0, a_{0}, a_{1}, \ldots, a_{n}\right)$
$(0,1,3,5,6,6,5,3,2,1)$
$0 \leq a_{n}, a_{0} \leq a_{n-1} \ldots$

On the rank polynomial side

symmetric piece larger smaller piece, shifted center

$$
\begin{array}{cc}
= & = \\
\left(0, a_{0}, a_{1}, \ldots, a_{n}\right) & (0,1,3,5,6,6,5,3,2,1) \quad 0 \leq a_{n}, a_{0} \leq a_{n-1} \ldots
\end{array}
$$

This gives us the other half of the bottom-interlacing equations:

$$
\begin{gather*}
a_{n} \leq a_{0}, \quad a_{n-1} \leq a_{1}, \quad a_{n-2} \leq a_{2}, \quad a_{n-3} \leq a_{3}, \ldots \\
+ \\
a_{0} \leq a_{n-1}, \quad a_{1} \leq a_{n-2}, \quad a_{2} \leq a_{n-3}, \cdots \\
= \tag{BI}\\
a_{n} \leq a_{0} \leq a_{n-1} \leq a_{1} \leq a_{n-2} \leq a_{2} \leq a_{n-3} \leq a_{3} \leq \ldots
\end{gather*}
$$

Theorem (Kantarcı Oğuz, Ravichandran, 2021)

Rank polynomials of fence posets are unimodal.
In particular, for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ we have:
(a) If $s=1$ then $r(\alpha)=(1,1, \ldots, 1)$ is symmetric.
(b) If s is even, then $r(\alpha)$ is bottom interlacing.
(c) If $s \geq 3$ is odd we have:
(i) If $\alpha_{1}>\alpha_{s}$ then $r(\alpha)$ is bottom interlacing.
(ii) If $\alpha_{1}<\alpha_{s}$ then $r(\alpha)$ is top interlacing.
(iii) If $\alpha_{1}=\alpha_{s}$ then $r(\alpha)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{s-1}\right)$ is symmetric, top interlacing, or bottom interlacing, respectively.

Are they also unimodal?

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.
For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.

For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.

For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.
We know the fence poset is unimodal if one of these apply:

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.

For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.
We know the fence poset is unimodal if one of these apply:

- We have an odd number of nodes.

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.

For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.
We know the fence poset is unimodal if one of these apply:

- We have an odd number of nodes.
- There are two consecutive parts that are larger than 1.

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.

For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.
We know the fence poset is unimodal if one of these apply:

- We have an odd number of nodes.
- There are two consecutive parts that are larger than 1.
- There are three consecutive parts $k, 1, l$ with $|k-I|>1$.

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.

For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.
We know the fence poset is unimodal if one of these apply:

- We have an odd number of nodes.
- There are two consecutive parts that are larger than 1.
- There are three consecutive parts $k, 1, l$ with $|k-I|>1$.

We also know that if there is a problem with unimodality, it only happens in the middle.

What about the rank polynomials of circular fence posets?

Are they also unimodal? Answer: Not always.
For the circular poset $(1, a, 1, a)$ we get a small dip in the middle:

$$
(1,2, \ldots, a, a+1, a, a+1, a, a-1, \ldots, 2,1)
$$

Nicer answer: Almost always.

Conjecture (Kantarcı Oğuz, Ravichandran, 2021)

For any $\alpha \neq(1, k, 1, k)$ or $(k, 1, k, 1)$ for some k, the rank sequence $\bar{R}(\alpha ; q)$ is unimodal.

Another Perspective

We can also see fences as intervals in the Young's lattice.
Young's Lattice is the lattice of Ferrers diagrams of Partitions ordered by inclusion.

(Image from Wikipedia, created by David Eppstein)

For any partition, we can look at the generating function of the partitions that lay under it.

$$
G(\lambda ; q):=\sum_{\mu \subset \lambda} q^{|\mu|}
$$

$$
\begin{gathered}
G(\square ; q)=q^{3}+2 q^{2}+q+1 \\
G(\boxminus ; q)=q^{4}+2 q^{3}+2 q^{2}+q+1
\end{gathered}
$$

For any partition, we can look at the generating function of the partitions that lay under it.

$$
G(\lambda ; q):=\sum_{\mu \subset \lambda} q^{|\mu|}
$$

$$
\begin{gathered}
G(\boxminus ; q)=q^{3}+2 q^{2}+q+1 \\
G(\boxminus ; q)=q^{4}+2 q^{3}+2 q^{2}+q+1
\end{gathered}
$$

We can also look at the interval between two partitions.

For any partition, we can look at the generating function of the partitions that lay under it.

$$
G(\lambda ; q):=\sum_{\mu \subset \lambda} q^{|\mu|}
$$

$$
\begin{gathered}
G(\square ; q)=q^{3}+2 q^{2}+q+1 \\
G(\boxminus ; q)=q^{4}+2 q^{3}+2 q^{2}+q+1
\end{gathered}
$$

We can also look at the interval between two partitions.

$$
G(\lambda / \nu ; q):=\sum_{\nu \subset \mu \subset \lambda} q^{|\mu|-|\nu|}
$$

$$
G(\boxminus / \boxminus ; q)=q^{2}+2 q+1
$$

Unimodality of these polynomials were considered by Stanton in 1990^{5}.

Unimodality of these polynomials were considered by Stanton in 1990^{5}. Note that taking the transpose does not change the polynomial we get, so we can think up to transpose.

[^5]Unimodality of these polynomials were considered by Stanton in 1990^{5}. Note that taking the transpose does not change the polynomial we get, so we can think up to transpose.

Conjecture (Stanton,1990)

The polynomials corresponding to self-dual partitions are unimodal.
${ }^{5}$ Stanton, "Unimodality and Young's lattice".

The counter examples mainly occur in the case where we have 4 parts, where we only get a dip in the middle.

The counter examples mainly occur in the case where we have 4 parts, where we only get a dip in the middle.

TABLE I

Partition		Values		Partition		i	
8844	15	313031	111166	21	676667		
10944	17	464546	141344	21	767576		
101044	17	464546	161244	23	919091		
121044	19	616061	141444	21	767576		
121144	19	616061	121284	23	818081		
121244	19	616061	121086	23	828182		
141144	21	767576	888642	23	141140141		
111165	21	676667	886644	23	144143144		
141244	21	767576					

(Table from "Unimodality and Young's Lattice", Stanton)

Given a fence, we can see it as a difference of two partitions α / ν.
Example $((2,1,1,3) \rightarrow(4,4,4,4,3) /(3,3,3,2))$

Given a fence, we can see it as a difference of two partitions α / ν.
Example $((2,1,1,3) \rightarrow(4,4,4,4,3) /(3,3,3,2))$

Note that the ideals of the fence coincide with the partitions that lie between α and ν, so $G(\lambda / \nu)$ agrees with the rank polynomial.

Given a fence, we can see it as a difference of two partitions α / ν.
Example $((2,1,1,3) \rightarrow(4,4,4,4,3) /(3,3,3,2))$

Note that the ideals of the fence coincide with the partitions that lie between α and ν, so $G(\lambda / \nu)$ agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of differences called ribbon diagrams, where we have no 2×2 box.

Given a fence, we can see it as a difference of two partitions α / ν.

Example $((2,1,1,3) \rightarrow(4,4,4,4,3) /(3,3,3,2))$

Note that the ideals of the fence coincide with the partitions that lie between α and ν, so $G(\lambda / \nu)$ agrees with the rank polynomial.

Rank polynomials actually correspond to a special class of differences called ribbon diagrams, where we have no 2×2 box.

Polynomials corresponding to ribbon diagrams are unimodal.

Thank you for listening!

Further Reading

Kantarcı Oğuz, E. \& Ravichandran, M. Rank Polynomials of Fence Posets are Unimodal. (2021)

Morier-Genoud, S. \& Ovsienko, V. q-deformed rationals and q-continued fractions. Forum Math. Sigma. 8 pp. Paper No. e13, 55 (2020).

R- McConville, T., Sagan, B. \& Smyth, C. On a rank-unimodality conjecture of Morier-Genoud and Ovsienko. Discrete Math.. 344 pp. 13 (2021).

R Elizalde, S. \& Sagan, B. Partial rank symmetry of distributive lattices for fences. (2022)

R Stanton, D. Unimodality and Young's lattice. J. Comb. Theory, Ser. A. 54, 41-53 (1990)

[^0]: ${ }^{1}$ Morier-Genoud and Ovsienko, " q-deformed rationals and q-continued fractions".

[^1]: ${ }^{1}$ Morier-Genoud and Ovsienko, " q-deformed rationals and q-continued fractions".

[^2]: ${ }^{2}$ McConville, B. E. Sagan, and Smyth, On a rank-unimodality conjecture of Morier-Genoud and Ovsienko.

[^3]: ${ }^{3}$ Kantarcı Oğuz and Ravichandran, Rank Polynomials of Fence Posets are Unimodal.
 ${ }^{4}$ Elizalde and B. Sagan, Partial rank symmetry of distributive lattices for fences.

[^4]: ${ }^{3}$ Kantarcı Oğuz and Ravichandran, Rank Polynomials of Fence Posets are Unimodal.
 ${ }^{4}$ Elizalde and B. Sagan, Partial rank symmetry of distributive lattices for fences.

[^5]: ${ }^{5}$ Stanton, "Unimodality and Young's lattice".

