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Invariant of the hypergeometric group associated to the
quantum cohomology of the projective space.

Susumu TANABÉ

Abstract - We present a simple method to calculate the Stokes
matrix for the quantum cohomology of the projective spaces CPk−1 in
terms of certain hypergeometric group. We present also an algebraic
variety whose fibre integrals are solutions to the given hypergeometric
equation.

1 Generalized hypergeometric function

We begin with a short review on the motivation of our problem making reference to the
works [5], [11] where one can find precise definitions of the notions below.

At first, we consider a k− dimensional Frobenius manifold F with flat coordinates (t1, · · · , tk)∈
F where the coordinate ti corresponds to coefficients of the basis ∆i of the quantum cohomol-
ogy H∗(CPk−1). On H∗(CPk−1) one can define so called quantum multiplication

∆α •∆β = Cγ
α,β∆γ,

or
∂

∂tα
· ∂
∂tβ

= Cγ
α,β

∂

∂tγ
,

on the level of vector fields on F. The Frobenius manifold is furnished with the Frobenius
algebra on the tangent space TtF depending analytically on t ∈ F, TtF = (At, < , >t) where
At is a commutative associative C algebra and < , >t: At × At → C a symmetric non-
degenerate bilinear form. The bilinear form < , >t defines a metric on F and the Levi-Civita
connexion ∇ for this metric can be considered. Dubrovin introduces a deformed flat connexion
∇̃ on F by the formula ∇̃uv := ∇uv + xu · v with x ∈ C the deformation parameter. Further
he extends ∇̃ to F ×C. Especially we have ∇̃ ∂

∂x
= ∂

∂x
−E(t)− µ

x
, where E(t) corresponds to

the multiplication by the Euler vector field E(t) =
∑

1≤j 6=2≤k−1(2− j)tj ∂
∂tj

+ kt2
∂
∂t2
.

After [5], [11] the quantum cohomology ~u(x) = (u1(x), · · · , uk(x)) for the projective space
CPk−1 at a semisimple point (0, t2, 0, . . . , 0) (i.e. the algebra (At, < , >t) is semisimple there)
satisfies the following system of differential equation:

(1.1) ∂x~u(x) = (kC∈(t) +
µ

§
)~u(§).
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where

C∈(′,t∈, ′, . . . , ′) = (Cγ∈,β)∞≤β,γ≤‖ =



0 0 · · · 0 et2

1 0
. . . 0 0

0 1
. . . 0 0

...
. . . . . .

...
...

0 0 · · · 1 0


.

The matrix µ denotes a diagonal matrix with rational entries:

µ = diag{−k − 1

2
,−k − 3

2
, · · · , k − 3

2
,
k − 1

2
}.

The last component uk(z) (after the change of variables z := kxe
t2
k ) of the above system

for the quantum cohomology satisfies a differential equation as follows [11]:

(1.2) [(ϑz)
k − zk]z

−k+1
2 uk(z) = 0,

with ϑz = z ∂
∂z
. After the Fourier-Laplace transformation

ũ(λ) =
∫
eλzz

−k+1
2 uk(z)dz,

we obtain an equation as follows:

[(ϑλ + 1)k − (
∂

∂λ
)k]ũ(λ) = 0.

Here the notation ϑλ stands for λ ∂
∂λ
. After multiplying λk from the left, we obtain

[λk(ϑλ + 1)k − ϑλ(ϑλ − 1)(ϑλ − 2) · · · (ϑλ − (k − 1))]ũ(λ) = 0.

The equation for λũ(λ), the Fourier-Laplace transform of ∂
∂z
z
−k+1

2 uk(z) should be

(1.3) [λk(ϑλ)
k − (ϑλ − 1)(ϑλ − 2) · · · (ϑλ − k)](λũ(λ)) = 0.

It is evident that the Stokes matrix for ∂
∂z
z
−1+k

2 uk(z) is identical with that of the original
solution uk(z).

Before proceding further, we remind the following theorem that gives connexion between
the Stokes matrix of the system (1.1) with the monodromy of the equation (1.3). Let us consider
the Fourier-Laplace transform of the system (1.1):

(1.1)′ (ϑλ + idk)~̃u(λ) = (kC∈(t)∂λ − µ)
~♥u(λ).

In a slightly more general setting, let us observe a system with regular singularities:

(1.1)” (Λ− λ · idk)∂λ~̃u(λ) = (idk + A1(λ))~̃u(λ)
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with Λ ∈ GL(k,C) whose eigenvalues (λ1, · · · , λk) are all distinct, A1(λ) ∈ End(Ck) ⊗ OC

with A1(0) = diag(ρ1, · · · , ρk) where none of the ρj’s is an integer. We call solutions to a
scalar differential equation deduced from (1.1)” component solutions. Thus solutions to (1.3)
are component solutions to (1.1)”.
Theorem 1.1 ( [1], [5]) Under the assumption that the eigenvalues of the matrix A1(0) are
distinct, the Stokes matrix S for the component solutions of (1.1) expresses the symmetric
Gram matrix G of the component solutions of (1.1)′ as follows:

tS + S = 2G.

As for the definition of the Stokes matrix S for the system (1.4) we refer to [5], [11]. The
main theorem of this article is the following:

Theorem 1.2 The i, j component Sij, 1 ≤ i, j ≤ k of the Stokes matrix to the system (1.1)
has the following expression:

S =

{
(−1)i−j kCi−j i ≥ j
0 i < j

This theorem has already been shown by D.Guzzetti [11] by means of a detailed study of
braid group actions etc on the set of solutions to (1.2). We present here another approach to
understand the structure of the Stokes matrix.

Remark 1 In this article we observe the convention of the matrix multiplicatin as follows:

A · x = (aij)0≤i,j≤k−1(xi)0≤i≤k−1 = 〈
k−1∑
i=0

aijxi〉0≤j≤k−1.

The matrix operates on the vector from left, in contrast to the convetion used in [5], [11].

On the other hand it has been known since [3] that a collection of coherent sheaves O(−i)
0 ≤ i ≤ k − 1 on CPk−1 satisfies the following relation

Hom(O(−i),O(−j)) = Si−j(Ck), 0 ≤ i, j ≤ k − 1

Ext`(O(−i),O(−j)) = 0, 0 ≤ i, j ≤ k − 1, ` > 0

These relation entails immediately the equality

χ(O(−i),O(−j)) :=
∑
`=0

(−1)`Ext`(O(−i),O(−j)) =

{
k+i−j−1Ci−j i ≥ j

0 i < j.
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We consider action of the braid group βi ∈ Bk, 1 ≤ i ≤ k − 1 that corresponds to the braid
action between i−th basis and (i + 1)−st basis of the space on which act a matrix. In our
situation, βi represents the braid action between O(1− i) and O(−i). In literature on coherent
sheaves on algebraic varieties, this procedure is called mutation (e.g. [9]). Let us denote by β
an element of the braid group Bk

β = β1(β2β1) · · · (βk−1 · · · β2β1).

We introduce a matrix of reordering J = δi,k−1−i, 0 ≤ i ≤ k − 1. In this situation our Stokes
matrix from Theorem 1.2 is connected with the matrix χ := (χ(O(−i),O(−j)) 0 ≤ i, j ≤ k−1
in the following way,

tS = JβχβJ.

Eventually it turns out that χ = S−1. This general fact on the braid group is explained in
[16], §2.4.

As our Stokes matrix is determined up to the change of basis, including effects by braid
group actions, the Theorem 1.2 is a confirmation of an hypothesis [6] that the matrix for
certain exceptional collection of coherent sheaves on a good Fano variety Y must coincide with
the Stokes matrix for the quantum cohomology of Y.

Our strategy to prove Theorem 1.2 consists in the study of system (1.1)′, instead of (1.1)
itself.

Further we consider so called the Kummer covering (naming after N.Katz) of the projective
space CP1 by ζ = λk to deduce an hypergeometric equation:

(1.4) [ζ(ϑζ)
k − (ϑζ −

1

k
)(ϑζ −

2

k
) · · · (ϑζ − 1)]v(ζ) = 0,

for v(λk) = λũ(λ). We remind of us here a famous theorem due to A.H.M.Levelt that allows
us to express the (global) monodromy group of the solution to (1.4) in quite a simple way. For
the hypergeometric equation in general,

(1.5) [
k∏
`=1

(ϑζ − α`)− ζ
k∏
`=1

(ϑζ − β`)]v(ζ) = 0,

we define two vectors (A1, · · · , Ak) and (B1, · · · , Bk) in the following way:

k∏
`=1

(t− e2πα`i) = tk + A1t
k−1 + A2t

k−2 + · · ·+ Ak,

k∏
`=1

(t− e2πβ`i) = tk +B1t
k−1 +B2t

k−2 + · · ·+Bk.

Definition 1.3 A linear map L ∈ GL(k,C) is called pseudo-reflexion if it satisfies the condi-
tion rank(idk − L) = 1. A pseudo-reflexion R satisfiying an additional condition R2 = idk is
called a reflexion.
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Proposition 1.4 ( [4], [13]) For the solutions to (1.5), the monodromy action on them at the
points ζ = 0,∞, 1 has the follwing expressions:

(1.6) h0 =



0 0 · · · 0 −Ak
1 0

. . . 0 −Ak−1

0 1
. . . 0 −Ak−2

...
. . . . . .

...
...

0 0 · · · 1 −A1


,

(h∞)−1 =



0 0 · · · 0 −Bk

1 0
. . . 0 −Bk−1

0 1
. . . 0 −Bk−2

...
. . . . . .

...
...

0 0 · · · 1 −B1


,

whereas h1 = (h0h∞)−1 is a pseudo-reflexion.

It is worthy to notice that the above proposition does not precise for which bases of solution
to (1.5) the monodromy is calculated. As a corollary to the Proposition 1.4, however, we see
that the monodromy action on the solutions to our equation (1.4) can be written down with
respect to a certain basis as follows:

(1.7) h0 =



0 0 · · · 0 1

1 0
. . . 0 0

0 1
. . . 0 0

...
. . . . . .

...
...

0 0 · · · 1 0


,

h∞ =



kC1 1 0 · · · 0 0

−kC2 0 1
. . . 0 0

...
...

...
. . .

...
...

(−1)k−1
kCk−2 0 0

. . . 1 0
(−1)k kCk−1 0 0 · · · 0 1
−(−1)k 0 0 · · · 0 0


.

In other words,

(1.8) det(t− h0) = tk − 1, det(t− h∞) = (t− 1)k.
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Furthermore we have,

(1.9) h1 =



(−1)k−1 0 0 · · · 0 0

(−1)k−2
kCk−1 1 0

. . . 0 0

(−1)k−3
kCk−2 0 1

. . . 0 0
...

...
...

. . .
...

...

kC1 0 0 · · · 0 1


.

In the next sectin we will see that the theory of Levelt supplies us with necessary data to
calculate further the Stokes matrix of the solutions to (1.1).

2 Invariants of the Hypergeometric group

Let us begin with a detailed description of the generators of the hypergeometric group
defined for the solutions to the equation (1.3).
Proposition 2.1 (cf. [8] I, 8.5) The generators of the hypergeometric group H of the equa-
tion(1.3) are expressed in terms of the matrices introduced in the Proposition 1.4 as follows:

(2.1) M0 = hk0 = 1,M1 = h1 = (h0h∞)−1,M∞ = hk∞,Mωi = h−i∞h1h
i
∞(i = 1, 2, · · · , k − 1),

where Mt denotes the monodromy action around the point t ∈ CP1
λ. The generators around

singular points ωi = e2π
√
−1 i

k naturally satisfy the Riemann-Fuchs relation:

(2.2) M∞Mωk−1Mωk−2 · · ·MωM1 = idk.

proof Let us think of a k−leaf covering C̃P
1

λ of CP1
ζ that corresponds to the Kummer covering

ζk = λ. In lifting up the path around ζ = 1 the first leaf of C̃P
1

λ, the monodromy h1 is sent to
the conjugation with a path around λ =∞. That is to say we have Mω = h−1

∞ h1h∞. For other
leaves the argument is similar. Q.E.D.

Let us denote by XK a k × k matrix that satisfies the relation

(2.3) ḡXK tg = XK ,

for every element g of a group K ⊂ GL(k,C). From the definition, the set of all XK for
a group K reperesents a C vector space in general. We will call a matrix of this space the
quadratic invariant of the group K. In the special case in which we are interested, the following
statement holds.

Lemma 2.2 For the hypergeometric group H generated by the pseudo-reflexions as in (2.1),
for every XH there exists a non zero k × k matrix X̃H such that XH = λX̃H for some
λ ∈ C \ {0}.
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proof The relation

(2.4) h1X
th1 = X

gives rise to equations on x0j and xj0. That is to say, the first row of (2.4) corresponds to

(−1)i kCix00 − (−1)k−1x0i = x0i, 1 ≤ i ≤ k − 1,

while
(−1)i kCix00 − (−1)k−1xi0 = xi0, 1 ≤ i ≤ k − 1.

Thus we obtained 2(k − 1) linearly independent equations. Further by concrete calculus one
can easily see that

Mω` = idk + T`,

where

T` =


t
(`)
0 τ0 t

(`)
1 τ0 · · · t

(`)
` τ0 0 · · · 0

t
(`)
0 τ1 t

(`)
1 τ1 · · · t

(`)
` τ1 0 · · · 0

...
...

...
...

...
...

...

t
(`)
0 τk−1 t

(`)
1 τk−1 · · · t

(`)
` τk−1 0 · · · 0

 ,

with (k − `)− zero columns from the right. The remaining columns are generated from T1

after simple linear recurrent relations by an inductive way. The relation MωX
tMω = X gives

rise to new equations

(1 + t
(1)
1 τ1)2x11 + linear functions in (x0i , xi0 ) = x11 ,

with (1 + t
(1)
1 τ1) = −1 + (kC1)2 6= 1 and

(1 + t
(1)
1 τ1)x1i + linear functions in (x0i , xi0 , x11 ) = x1i ,

(1 + t
(1)
1 τ1)xi1 + linear functions in (x0i , xi0 ) = xi1 .

Thus we get 2k− 3 new linearly independent equations. In general for (`, `) term, we get from
the relation Mω`X

tMω` = X, 1 ≤ ` ≤ k − 1

(1 + t
(`)
` τ`)

2x`` + linear functions in (xνi , xiν , 0 ≤ ν ≤ `− 1 ) = x``,

with 1 + t
(`)
` τ` = −1 + (kC`)

2 6= 1. For xi`

(1 + t
(`)
` τ`)xi` + linear functions in (xνi , xiν , 0 ≤ ν ≤ `− 1 , x``) = xi`.

In this way we get a set of 2(k− 1) +
∑k−1
`=1 (2(k− `)− 1) = k2− 1 independent linear equations

with respect to the elements of X. Q.E.D.
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The quadratic invariant XH0 for H0 = {h0, h∞} is invariant with respect to H. After the
lemma 2.2, C vector space of quadratic invariants XH is one dimensional. Thus every XH0 is
also XH . Hence we can calculate the quadratic invariant XH after the following relations,

(2.5) h̄0X
H th0 = XH , h̄∞X

H th∞ = XH .

From [4] we know that the inverse to XH0 = XH , if it exists, must be a Toeplitz matrix
i.e.:

(XH0)−1 =



x0 x1 x2 · · · xk−1

x−1 x0 x1 · · · xk−2

x−2 x−1 x0 · · · xk−3
...

. . . . . .
...

...
x−(k−1) x−(k−2) x−(k−3) · · · x0

 .

Making use of this circumstances, it is possible to show that the system of equations that arises
from the relations

th∞(XH0)−1 h̄∞ = (XH0)−1,t h0(XH0)−1 h̄0 = (XH0)−1,

for (XH0)−1 consists of 2(k − 1) equations.

(2.6)′ xk−1−i = x−i−1,

(2.6)′′ (−1)k+1xk−1−i + (−1)k kCk−1xk−2−i + · · ·+ kC3x2−i − kC2x1−i + kx−i = x−1−i

This calculates the matrix XH for the case k− odd.
As for the case k− even, our matrix XH has the following form

XH =



0 y1 y2 · · · yk−1

y−1 0 y1 · · · yk−2

y−2 y−1 0 · · · yk−3
...

. . . . . .
...

...
y−(k−1) y−(k−2) y−(k−3) · · · 0

 ,

where y−(k−1), · · · yk−1 satisfy 2(k − 1) equations for some constant y0,

(2.6)′′′ yi + y−i = 0, yi − y−i = 2(−1)i kCiy0 1 ≤ i ≤ k − 1,

which are derived from (2.5). Thus the matrix XH for the case k−even is obtained.
We remember here a classical theorem on the pseudo-reflexions.

Theorem 2.3 (cf. Bourbaki Groupe et Algèbre de Lie Chapitre V, §6, Exercise 3) Let E be a
vector space with basis (e1, · · · , ed), and their dual basis (f1, · · · , fd)∈ E∗. Let us set aij = fi(ej).
The pseudo-reflexion si with respec to the basis fi is defined as

si(ej) = ej − fi(ej)ei = ej − aijei.
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Set

(2.7) V =



a11 a21 a31 · · · ad1

0 a22 a32 · · · ad2

0 0 a33 · · · ad3
...

. . . . . .
...

...
0 0 · · · 0 add

 , U =



0 0 0 · · · 0
a12 0 0 · · · 0
a13 a23 0 · · · 0
...

. . . . . .
...

...
a1d a2d · · · ad−1,d 0


Under these notations, the composition of all possible reflexions sdsd−1 · · · s1 (a Coxeter ele-
ment) with respect to the basis (e1, · · · , ed) is expressed as follows:

(2.8) sdsd−1 · · · s1 = (idd − V )(idd + U)−1.

proof For 1 ≤ i, k ≤ d we define
yi = si−1 · · · s1(ei).

It is possible to see that

ei = yi +
∑
k<i≤d

akiyk, sd · · · s1(ei) = yi −
∑
i≤k≤d

akiyk.

The statement follows immediately from these relations. Q.E.D.
To establish a relationship between the invariant XH and the Gram matrix necessary for

calculus of the Stokes matrix, we investigate a situation where the generators of the hyper-
geomeric group have special forms. Namely consider a hypergeometric group Γ of rank k
generated by pseudo-reflexions R0, · · ·Rk−1 where

(2.9) Rj = idk −Qj,

with

(2.10) Qj =



0 · · · 0 tj0 0 · · · 0
0 · · · 0 tj1 0 · · · 0
0 · · · 0 tj2 0 · · · 0
... · · · ...

...
... · · · ...

0 · · · 0 tj,k−1 0 · · · 0

 , 0 ≤ j ≤ k − 1,

all zero components except for the j−th column. Let us define the Gram matrix G associated
to the above collection of pseudo-reflexions:

(2.11) G =



t00 t10 · · · tk−1,0

t01 t11 · · · tk−1,1

t02 t12 · · · tk−1,2
...

... · · · ...
t0,k−1 t1,k−1 · · · tk−1,k−1

 .
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We shall treat the cases where G is either symmetric or anti-symmetric. Let us introduce an
upper triangle matrix S satisfying

G = S +t S (resp. G = S −t S),

for a symmetric (anti-symmetric) matrix G. In the anti-symmetric case, we shall use a con-
vention so that the diagonal part of S is a scalar multiplication on the unit matrix. It is easy
to see that for the symmetric (resp. anti-symemtric) G the diagonal element tjj = 2 (resp.
tjj = 0).

Proposition 2.4 For an hypergeometric group Γ defined over R, the following statements
hold.

1) Suppose that the space of quadratic invariant matrices XΓ is 1 dimensional. Then XΓ

coincides with the Gram matrix G (2.11) up to scalar multiplication.
2)The composition of all generators R0, · · · , Rk−1 gives us the Seifert form:

(2.12) Rk−1 · · ·R0 = ∓tS · S−1,

where to the minus sign corresponds symmetric G and to the plus sign anti-symmetric G.

proof 1) It is enough to prove that the Gram matrix is a quadratic invariant. We calculate

RjG
tRj = (idk −Qj)G(idk − tQj).

It is esy to compute

QjG = (tajtjb)0≤a,b≤k−1, G
tQj = (tjatjb)0≤a,b≤k−1,

QjG
tQj = tjjG

tQ.

It yields the following equality,

GtQj +QjG−QjG
tQj = (tjb((1− tjj)tja + taj))0≤a,b≤k−1,

that vanishes for G symmetric with tjj = 2 and for G anti-symmetric with tjj = 0.
2) It is possible to apply directly our situation to that of Theorem 2.3. In the symmetric

case, tii = 2 and

V =



2 t10 t20 · · · tk−1,0

0 2 t21 · · · tk−1,1

0 0 2 · · · tk−1,2
...

. . . . . .
...

...
0 0 · · · 0 2

 , U =



0 0 0 · · · 0
t10 0 0 · · · 0
t20 t21 0 · · · 0
...

. . . . . .
...

...
tk−1,0 tk−1,1 · · · tk−1,k−2 0

 ,

in accordance with the notation (2.7). The formula (2.8) means (2.12) with minus sign. In the
anti-symmetric case tii = 0, 0 ≤ i ≤ k − 1 and (2.7) yields (2.11) with plus sign. Q.E.D.
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Corollary 2.5 We can determine the Stokes matrix S by the following relation

(2.13) S = (idk −Rk−1 · · ·R0)−1G,

with the aid of the Gram matrix and pseudo-reflexions.

In some sense, a converse to the Proposition 2.4 holds. To show this, we remember a
definition and a proposition from [14].

Definition 2.6 The fundamental set (u0(λ), · · ·uk−1(λ)) of the system (1.1)” is a set of its
component solutions satisfying the following asymptotic expansion:

uj(λ) = (λ− λj)ρj
∞∑
r=0

g(j)
r (λ− λj)r,

where (λ0, · · ·λk−1) are eigenvalues of the matrix Λ. The exponents ρj are diagonal elements
of the matrix A1(0).

After [14], the fundamental set to the system (1.1)” is uniquely determined.

Proposition 2.7 ( [14]) Every generator of an hypergeometric group Γ over R defined for
the system of type (1.1)” (without logarithmic solution) is a product of pseudo-reflexions of the
follwing form expressed with respect to its fundamental set:

(2.14) Mj = idk −


0 · · · 0 sj0 0 · · · 0
0 · · · 0 sj1 0 · · · 0
... · · · ...

...
... · · · ...

0 · · · 0 sj,k−1 0 · · · 0

 .

where sjj = 2 or 0.

We get the following corollary to the above proposition 2.7.

Corollary 2.8 Assume that the hypergeometric group Γ is generated by pseudo-reflexions
T0, · · · , Tk−1 such that rank(Ti − idk) = 1 for 0 ≤ i ≤ k − 1. Then it is possible to choose
a suitable set of pseudo-reflexions generators Rj like (2.9), (2.10), up to constant multiplica-
tion on Qj, so that they determine the quadratic invariant Gram matrix like (2.11).

proof The proposition 2.7 implies that every generator Ti is a product of pseudo-reflexions
Mj with sjk possibly different from tjk. From the condition on the quadratic invariant XΓ

and the proposition 2.4, sjk must coincide with tjk. That is to say Γ must be generated by
M0, · · · ,Mk−1 with sja

tja
=

sjb
tjb

for all a, b, j ∈ {0, · · · , k − 1}. This means that Γ has as its

generators the pseudo-reflexions R0, · · · , Rk−1 of (2.12) up to constant multiplication on Qj.
Q.E.D.
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proof of Theorem 1.2 First we remark that solutions to (1.3) have no logarithmic asymptotic
behaviour around any of their singular points except for the infinity.

In the case with k odd for XH0 , there exists a 6= 0 such that the vector ~v0 :=t (1 +
(−1)k−1,−k, kC2, · · · , (−1)k−2

kCk−2, (−1)k−1
kCk−1) ∈ Rk satisfies the relation:

XH0 ~v0 =t (a, 0, 0, · · · , 0).

Actually this fact can be proven almost without calculation in the follwing way. First we
introduce a series of vetors

~w` = (x−`, x−`+1, · · · , xk−1−`), ` = 0, 1, · · · , k − 1.

Then the equation (2.6)′′ can be rewritten in terms of ~w`:

~w` · ~v0 =
k−1∑
i=0

(−1)i kCi · xi−` = 0 for 1 ≤ ` ≤ k− 1.

On the other hand, the vector ~w0 is linearly independent of the vectors ~w1, . . . ~wk−1 by virtue
of the construction of the matrix X. Therefore ~w0 · ~v0 6= 0 as ~v0 6= 0. This means the existence
of the non zero constant a as above.

This relation with the corollary 2.8 gives immediately the expression below for the pseudo-
reflexions

(2.15) Rj = idk −



0 · · · 0 (−1)j+k−1
kCj · r 0 · · · 0

... · · · ...
...

... · · · ...
0 · · · 0 −(−1)k−1k · r 0 · · · 0
0 · · · 0 (1 + (−1)k−1) · r 0 · · · 0
0 · · · 0 −k · r 0 · · · 0
0 · · · 0 kC2 · r 0 · · · 0
... · · · ...

...
... · · · ...

0 · · · 0 (−1)k−1−j
kCk−j−1 · r 0 · · · 0


, 0 ≤ j ≤ k − 1,

whose Gram matrix is equal to

(2.16)
Gij = (−1)i−j+k−1

kCi−j · r i > j
Gii = (1 + (−1)k−1) · r i = j
Gij = (−1)i−j kCj−i · r j > i

with some constant r. As for the case k− even, the equations (2.6)′′′ and the Corollary 2.8
gives us the expression (2.15) for the pseudo-reflexion generators.

Taking into account the theorem 1.1 for the symmetric Gram matrix, we obtain the desired
statement for the case k− odd, as it is required from Proposition 2.7 Gii = 2 = 2r.
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For the case k−even, we remember a statement on the Stokes matrix from [1]( Proposition
1,2) which claims that if the matrix µ of (1.1) has integer eigenvalues, the equality det(S+ tS) =
0 must hold. The Corllary 2.5 gives us the relation

S = (idk + (idk − V )(idk + U)−1)−1G = (idk + U)G−1G = idk + U,

with
Uij = (−1)i−j+k−1

kCi−j · r i > j.

We shall choose the constant r = 1 so that S + tS = 2idk + U +t U posesses an eigenvector
(1,−1, · · · , 1,−1) with zero eigenvalue. Q.E.D.

Remark 2 The Gram matrix (2.16) that has been calculated for the fundamental set (Def-
inition 2.6) of the equation (1.3) gives directly a suitable Stokes matrix we expected. For
other Fano varieties, however, the Gram matrix calculated with respect to the fundamental
set does not necessarily give a desirable form, as it is seen from the case of odd dimensional
quadrics. This situation makes us to be careful in the choice of the base of solutions for which
we calculate the Gram matrix.

3 Geometric interpretation of the hypergeometric

equation

In this section we show that the equation (1.4) arises from the differential operator that
annihilates the fibre integral associated to the family of variety defined as a complete intersec-
tion

(3.1) Xs := {(x0, · · ·xk) ∈ Ck+1; f1(x) + s = 0, f2(x) + 1 = 0}.

where
f1(x) = x0x1 · · ·xk, f2(x) = x0 + x1 + · · ·+ xk.

This result has been already announced by [7], [8] and [2]. Our main theorem of this section
is the following
Theorem 3.1 Let us assume that <(f1(x)+s)|Γ < 0, <(f2(x)+s)|Γ < 0, out of a compact set
for a Leray coboundary cycle Γ ∈ Hk+1(Ck+1 \Xs) avoiding the hypersurfacess f1(x) + s = 0
and f2(x) + 1 = 0. For such a cycle we consider the following residue integral:

(3.2) I
(v1,v2)

xi,Γ (s) =
∫

Γ
xi+1(f1(x) + s)−v1(f2(x) + 1)−v2

dx

x1
,

for the monomial xi := xi00 · · ·xikk , x1 := x0 · · · xk. Then the integral I
(1,1)
x0,Γ (s) satisfies the fol-

lowing hypergeometric differential equation

(3.3) [ϑks − kks(ϑs +
1

k
)(ϑs +

2

k
) · · · (ϑs +

k

k
)]I

(1,1)
1,Γ (s) = 0
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which has unique holomorphic solution at s = 0,

(3.4) I0(s) =
∑
m≥0

(km)!

(m!)k
sm.

We shall put ζ = 1
kks
, to get (1.4) from (3.3). Our calculus is essentially based on the Cayley

trick method developed in [15].
Proof of Theorem 3.1 Let us consider the Mellin transform of the fibre integral (3.2)

(3.5) M
(v1,v2)
i,Γ (z) :=

∫
Π
szI

(v1,v2)

xi (s)
ds

s

For the Mellin transform (3.5), we have the following

(3.5)′ M
(v1,v2)
i,Γ (z) = g(z)

k−1∏
`=0

Γ(z + i` + 1− v2)Γ(−
k−1∑
`=0

(i` + 1)− kz + v1 + kv2)Γ(−z + v2)Γ(z),

with g(z) a rational function in eπiz. The formula (3.5)′ shall be proven below. In substituting
i = 0, v1 = v2 = 1, we see that

I
(1,1)
x0,Γ (s) =

∫
Π̌
s−zg(z)

Γ(z)k

Γ(kz)
dz,

where Π̌ denotes the path (−i∞,+i∞) avoidoing the poles of Γ(z) = 0,−1,−2, · · · . From this
integral representation, the equation (3.3) immediately follows in taking account the fact that
the factor g(z) plays no role in establishment of the differential equation. Q.E.D.

Proof of (3.5)′ In making use of the Cayley trick, we transform the integral (3.5) into the
following form

(3.6) M
(v1,v2)
i,Γ (z) =

∫
Π×R2

+×Γ
xi+1ey1(f1(x)+s)+y2(f2(x)+1)yv11 y

v2
2 s

z dx

x1
dy

y1
ds

s1
,

with R+ the positive real axis in Cyp for p = 1 or 2. Here we introduce new variables T0, · · ·Tk+2,

(3.7) Ti = y1xi, 0 ≤ i ≤ k − 1, Tk = y1s, Tk+1 = y2x0x1 · · ·xk−1, Tk+2 = y2

in such a way that the phase function of the right hand side of (3.6) becomes

y1(f1(x) + s) + y2(f2(x) + 1) = T0 + T1 + · · ·+ Tk+2.

If we set
Log T :=t (log T0, · · · , log Tk+2)

Ξ :=t (x0, · · · , xk−1, s, y1, y2)
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Log Ξ :=t (log x0, · · · , log xk−1, log s, , log y1, log y2).

Then the above relationship (3.7) can be written down as

(3.8) Log T = L · Log Ξ,

where

L =



1 0 0 · · · 0 0 1 0

0 1 0 · · · 0 0 1 0

0 0 1 · · · 0 0 1 0

...
...

...
. . .

...
...

...
...

0 0 0 · · · 1 0 1 0

0 0 0 · · · 0 0 1 0

1 1 1 · · · 1 0 0 1

0 0 0 · · · 0 1 0 1



.

This yields immediately
Log Ξ = L−1 · Log T,

with

L−1 =



1 0 0 · · · 0 −1 0 0

0 1 0 · · · 0 −1 0 0

0 0 1 · · · 0 −1 0 0

...
...

...
. . .

...
...

...
...

0 0 0 · · · 1 −1 0 0

1 1 1 · · · 1 −k −1 1

0 0 0 · · · 0 1 0 0

−1 −1 −1 · · · −1 k 1 0



.

If we set

(3.9) (i0, · · · ik−1, z, v1, v2) · L−1 = (L0(i, z, v1, v2), · · · ,Lk+2(i, z, v1, v2)).

then we can see that

M
(v1,v2)
i,Γ (z) =

∫
Π×R2

+×Γ
xi+1eT0+···+Tk+2yv11 y

v2
2 s

z dx

x1
dy

y1
ds

s1

=
∫

L∗(Π×R2
+×Γ)

eT0+···+Tk+2
∏

0≤i≤k+2

T
Li(i,z,v1,v2)
i

∧
0≤i≤k+2

dTi
Ti
.



Gram matrix 16

Here L∗(Π×R2
+ × Γ) denotes a (k + 3)−chain in T0 · · ·Tk+2 6= 0 that obtained as a image of

Π ×R2
+ × Γ under the transformation induced by L. In view of the choice of the cycle Γ, we

can apply the formula to calculate Γ function to our situation:∫
C
e−TT σ

dT

T
= (1− e2πiσ)Γ(σ),

for the unique nontrivial cycle C turning around T = 0 that begins and returns to <T → +∞.
Here one can consider the natural action λ : Ca → λ(Ca) defined by the relation,∫

λ(Ca)
e−TaT σaa

dTa
Ta

=
∫

(Ca)
e−Ta(e2π

√
−1Ta)

σa
dTa
Ta

.

In terms of this action L∗(Π×R2
+ × Γ) is shown to be homologous to a chain

∑
(j

(ρ)
0 ,···,j(ρ)

k+2
)∈[1,∆]k+3

m
j
(ρ)
0 ,···,j(ρ)

k+2

1∏
a=0

λj
(ρ)
a (R+)

k+2∏
a′=2

λj
(ρ)

a′ (Ca′),

with m
j
(ρ)
0 ,···,j(ρ)

k+2

∈ Z. This explains the appearance of the factor g(z) in front of the Γ function

factors in (3.5)′.
The direct calculation of (3.9) shows that

L`(i, z, v1, v2) = z + i` + 1− v2, 0 ≤ ` ≤ k − 1,

Lk(i, z, v1, v2) = −
k−1∑
`=0

(i` + 1) + v1 + k(v2− z),Lk+1(i, z, v1, v2) = −z+ v2,Lk+2(i, z, v1, v2) = z.

This shows the formula (3.5)′. Q.E.D.
In combining Theorems 1.2, 3.1, we can state that we found out a deformation of an

algebraic variety Xλ = {(λ
k
)k(x0x1 · · ·xk) + 1 = 0, x0 + x1 + · · · + xk = 1 = 0}. such that its

variation gives rise to the equation (1.3). It means that we establish a connexion between an
exceptional collection of CPk−1 and a set of vanishing cycles for its mirror counter part Xλ.
Thus our theorems give an affirmative answer to the hypothesis stating the existence of such
relationship between two mirror symmetric varieties (so called Bondal-Kontsevich hypothesis)
in a special case. See [8] and [12] in this respect for the detail.

It is known from the theory of period integrals associated to the complete intersections
[10] that the integrals I

(v1,v2)

xi,Γ (( k
λ
)k) for Γ ∈ Hk+1(Ck+1 \ Xλ,Z) has singularities only at the

discriminant locus of Xλ where the cycle Γ becomes singular (or vanishes). On the other hand,
in §2 we found a set of solutions called fundamental such that uj(λ) has an singular point

λ = e2π
√
−1 j

k . Two solutions to an hypergeometric differential equation (1.3) with the same
assigned asymptotic behaviours at all possible singular points must coincide. In combination
of this argument with the Picard-Lefschetz theorem, we obtain the following.
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Corollary 3.2 There exists a set of cycles γj ∈ Hk−1(Xλ,Z), 0 ≤ j ≤ k − 1 such that for
their Leray’s coboundary Γj ∈ Hk+1(Ck+1 \Xλ,Z) we have the identity,

I
(1,1)
x0,Γj

((
k

λ
)k) = uj(λ), 0 ≤ j ≤ k − 1,

with uj(λ) the fundamental solution to (1.3) in the sense of Definition 2.6. Consequently the
Gram matrix G of (2.16) is equal to the intersection matrix (< γi, γj >)0≤i,j≤k−1 after proper
choice of constant r = 1.
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