INVARIANTS OF HYPERGEOMETRIC GROUPS FOR CALABI-YAU
COMPLETE INTERSECTIONS IN WEIGHTED PROJECTIVE SPACES

SUSUMU TANABE AND KAZUSHI UEDA

ABSTRACT. Let Y be a Calabi-Yau complete intersection in a weighted projective space.
We show that the space of quadratic invariants of the hypergeometric group associated
with the twisted I-function is one-dimensional, and spanned by the Gram matrix of a
split-generator of the derived category of coherent sheaves on Y with respect to the Euler
form.

1. INTRODUCTION
Let ¢ = (qo,--.,qn) and d = (dy, . .., d,) be sequences of positive integers such that
Q::q0+"‘+QN:dl+"‘+dr,

and consider a complete intersection Y of degree (di,...,d,) in the weighted projective
space P = P(qo,...,qn). If Y is smooth, then it is a Calabi-Yau manifold of dimension
n = N — r. The derived category D’cohP of coherent sheaves on P has a full strong
exceptional collection

(E)L1 = (Op, Op(1),...,0:(Q — 1))
of line bundles [Bei78, AKOO08]. Let (F;)<, be the full exceptional collection dual to
(E)L,, so that
X(Eq-it1, Fj) = ;5
where

(1.1) X(E,F)=> (1)} dimExt*(£, F)

k

is the Buler form. The derived restrictions {F;}2, of {F}2, to Y split-generate the
derived category D°cohY of coherent sheaves on Y [Seill, Lemma 5.4].
Following [CLCT09, Equation (4)], let us introduce the twisted I-function

[eS) HZ:I H b: (b)=(padr) (dkPa + b)

o n 0<b<(n+pa)ds,
(1.2) Ipy (t) =) efeloatra y g :
; ; [T Ils: =tpua) (@ Pa+0)
0<b<(n+pa)qu

where (r) = v—|z] is the fractional part of . This is an element of the ring @@, C[Py]o/(P)a,
which is isomorphic to the orbifold cohomology of P as a vector space. See Section 2 for

the definition of p, € Q and p, € N. The twisted I-function Ipy contains the information

of twisted Gromov-Witten invariant of the bundle Op(d;) @ --- ® Op(d,) — P through

the twisted J-function [CCIT09].
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The components of the twisted /-function span the space of solutions of the hypergeo-
metric differential equation

N q—1 r
(1.3) IT1I] @b —a —tHH (diby +b) [ I =0
v=0 a=0 k=10b=1

0

where 0, = t—t. Let H be the differential operator on the left hand side and H™? be the
operator obtained from H by removing common factors from the two summands of H.
Both H and H™! have regular singularities at 0, co and A = [],_ qu / 11—, dd’c The
local system £ defined by H™¢ is irreducible, and its rank Q™Y is smaller than the rank
Q of the local system £ defined by H. The irreducible system £ supports a pure and
polarized variation of Hodge structures, whose Hodge numbers are computed by Corti
and Golyshev [CG11, Theorem 1.3].

The mirror of Y is identified by Batyrev and Borisov [BB96| as the family of toric
complete intersections whose affine part is given by

(1.4) X, ={(20,---,ony) € (CHOYT| fi(x) =0, i=0,...,7}
where
fo(a:) =z 2 —t,

(x) Zxk—l i=1,...,r,

the variable ¢ is the parameter of the family, and S;U---US, ={0,1,..., N} is a partition
of {0,1,..., N} into r disjoint subsets such that d = Ziesk g;- The period integral

T ...T dxg dx,,
1.5 I(t :/M Ao N —
(15) W= | Fon—Adf, w0 T

for a middle-dimensional cycle v € H, (X;) satisfies the irreducible hypergeometric differ-
ential equation H™4J = 0.
Define the hypergeometric group Hg 4 as the subgroup of GL(Q,Z) generated by

00 ... 0 —Ag

10 ... 0 —Ag,
(1.6) ho = 01 ... 0 —Ag-

0 0 1 —-A
and

00 0 —Bg

10 0 —Bg-
(1.7) ho—l 101 0 —Bg-»o ’

00 1 —-B
where
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and

N
(1.9) [[(T" —1)=T%+ BT + BT9? +--- + By

v=0
are the characteristic polynomials of the monodromy of (1.3) at infinity and zero re-
spectively. If the system is irreducible, then a result of Levelt [Lev61] states that the
monodromy group is conjugate to the hypergeometric group Hgq. Although the sys-
tem L is reducible and one can not apply the result of Levelt directly, we can show the
following;:

Theorem 1.1. For any sequences ¢ = (qo, .. .,qn) and d = (dy, ..., d,) of positive inte-
gers satisfying

Q=q+ +qv=d+ - +d,
the monodromy group of (1.3) is conjugate to the hypergeometric group Hy q

An element h € Hy 4 acts naturally on the space of () X ()-matrices by
Hya>h:X—h-X-h"
where h” is the transpose of h. The following is a corollary of Theorem 1.1:

Theorem 1.2. The space of Q) X Q-matrices invariant under the action of the monodromy
group Hgq of (1.3) is one-dimensional and spanned by the Gram matriz

(X(?iv ?j))szl

of the split-generator {F;}%, with respect to the Euler form.

This theorem is closely related to the works of Horja [Hor, Theorem 4.9] and Golyshev
[Gol01, §3.5], which goes back to Kontsevich [Kon98]. The main difference from their
works is that we work with the reducible system £ which contains solutions not coming
from period integrals on the mirror manifold. Although the geometric meaning of these
extra solutions is unclear, Theorem 1.1 shows that the monodromy of the reducible system
is controlled by the derived category of coherent sheaves on Y just as in the case of the
irreducible system.

The organization of this paper is as follows: The proof of Theorem 1.1 is given in Section
2. The essential step is to show the existence of a cyclic vector for the monodromy around
the origin, which satisfies additional condition with respect to the monodromy at infinity.
The uniqueness of the invariant of the hypergeometric group is shown in Section 3, and
the invariance of the Gram matrix of the split-generator with respect to the Euler form
is shown in Section 4. In Section 5, we discuss the relationship between the Gram matrix
in Theorem 1.2 and the Stokes matrix for the quantum cohomology of the weighted
projective space.

Acknowledgment: We thank Hiroshi Iritani for valuable discussions. This work is
supported by Grant-in-Aid for Scientific Research (No. 20540086 and No. 20740037).

2. MONODROMY OF HYPERGEOMETRIC EQUATION

We prove Theorem 1.1 in this section. Let hg, hy and hs be the global monodromy
matrix of the hypergeometric differential equation (1.3) around the origin, one and infinity
with respect to some basis of solutions satisfying ho-hi-hs = 1. Recall that a vector v € C?

is said to be cyclic with respect to h € GL(Q,C) if the set {h" - U}iQ:_Ol spans C?. The
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following lemma is used by Levelt [Lev61] to compute the monodromy of hypergeometric
functions (see also Beukers and Heckman [BH89, Theorem 3.5]).

Lemma 2.1. Assume that there exists a vector satisfying
(2.1) bv = hlv, i=1,...,Q—1,

which is cyclic with respect to hy. Then the monodromy group of (1.3) is isomorphic to
Hgq.

Proof. The condition (2.1) shows that the action of hy and hy! with respect to the basis
{hiv}¥,! of C9 is given by

0 0 . 0 =*
1 0 . 0 =
01 . 0 =
00 ... 1 =%

The last line is determined by the characteristic equations

det(T — hg) = T9 + AT + A, T2 -+ Ag
and

det(T' —h ) =T + B/TO + B,T9? +--- + By.

OJ

Remark 2.2. Even if there is no vector satisfying (2.1) which is cyclic with respect
to hg, one can consider the subspace generated from any vector satisfying (2.1) by the
action of hg, and the resulting matrix presentation the monodromy action with respect
to {h v}, will be given by (1.7) and (1.6). Since {hiv}?' is not a basis but only a
generator in such a case, this matrix presentation is not unique.

Hence the proof of Theorem 1.1 is reduced to the following:

Proposition 2.3. There exists a vector v in the space of solutions of (1.3) which is cyclic
with respect to hy and satisfies (2.1).

The rest of this section is devoted to the proof of Proposition 2.3. The hypergeo-
metric differential equation (1.3) has regular singularities at ¢t = 0,00 and A where
=TI, ¢ / [1)_, d%*. To simplify notations, we introduce another variable z by t = \z.
Then the local exponents are given by

b
—, k=1,....,r, b=1,...,dg at z = oo,
dy
g, v=1,....N, a=0,...,q,—1 at z =0, and
qu
-1
0, 1, 2,...,@—2,% at » = 1.

Let
I>pp>pa>-->p,=0
be the characteristic exponents of (1.3) at z = 0 so that

o= U {0,i,...,q”_1}.

0<V<N qu Qv
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Let further

pa=—, 0<a<q, —1, O§I/§N}

Mo = # {(QW a)
be the multiplicity of the exponent p, and put

eq = exp(2mV—1p,), 1<a<p.
We remark that p, = N + 1. For the quantity defined by

b
ya:#{(dk,b)pazl—d—, 1<b<d, —1, 1§k:§r}, 1<a<p
k
the following relation holds
P
Qred = Z(Na — Vo).
a=1
Let us introduce the matrices
p1id,, +J,, - 0 e 0
T R
0 0 e ppidy,, ), -
epidy, +Jp, - 0 e 0
R
0 0 ceeepidy, +J, -
where J; + are ¢ X ¢ matrices defined by
010 - 0
001 - 0
Jigo=1: o :
000 1
000 0
and
0 0 0 0
10 -+ 00
J_ =01 - 00
00 --- 10

A series solution to (1.3) at the origin can be obtained by the Frobenius method:

Lemma 2.4. A basis of solutions to (1.3) can be obtained as the coefficient of P! for
a=1,...,pandi=0,...,1u, — 1 in the U-series in (1.2). Solutions to the irreducible
equation H™u = 0 correspond to the cofficient of Pt fori =0, ..., jtq — Vo — 1 in (1.2).

Proof. Let
00 szl H b:b<b>(=<pad)kcg (dk‘Pa + b)
H = GPa logttpa tn 0<b<(n+pa )dg
N
; HV:O H b: (b)=(paqv) (qI/Pa + b)

0<b<(n+pa)qv
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be the I'-series in (1.2) considered as a formal power series in P, and logt. A direct
calculation shows

N q—1 r N qu—1
HqH (q,0 —a —tHH (d0+0b)| I = (HqH WP _|_q,,py—a)> Plogttpa7
v=0 a=0 k=10b=1 v=0 a=0

where the right hand side is proportional to P so that the coefficients of P for i =
0,1,..., o — 1 give solutions to the hypergeometric equation (1.3).

Alternatively, one can also argue as follows: For the set of poles II, = {w € C :
lw+pa+nl=€6neN0<ek 1} the Mellin-Barnes integral

27”/ quy HFl—dkw “Ydw,

with s = (—1)@t gives us a solution that is the P#»~! part of (1.2). This can be seen from
the following calculation

Z Resy=—p,—n H (g w [(1 — dpw)s™™

= Z ﬁ(di)”a_l((w + po +n)ke H ['(qw) H INOE dkw)s_w”w:—pa—n
= ﬁ( di))”a—l((—P)ﬂa H ['(—=q,(patn+P)) HF(1+dk(0a+n+P))spa+"+P|PZO

oy DR (- o TT TS e+ PV ) o
=T _1 (o = 1) Z ( ) ( ! [1oso T (g (pa + P) + 1) (=170 >|P=0

d
x((dp P“O‘HF (—qu(pa + P)) HF 1+dk(pa+n+P))>|P:0
k=1

To get a solution with ngﬂ_z part of (1.2) we choose v € [0, N] such that p, = - for
vl
some a € [0,¢q,, — 1] and calculate
N r —w
L (_1)‘1V1w Hu:O,u;ﬁul F(qu) Hk:l F(l o dkw)s dw
271 I, F(l - ql/lw)
In this way we increase the number of I'-factors in the denominator. The factor I'(g,w)

multiplied by a function M( 1)%" with period 27i gives % Thus we obtain a

tte tuple of Mellin-Barnes integral solutions to (1.3) that are linear combinations of (1.2).
To get (1.2) solutions from the Mellin-Barnes integral solutions we need only to solve a
system of linear equations determined by a p, X p, upper triangle matrix with non-zero
diagonal entries.

As for the statement on the solutions to the irreducible operator H"*? we shall consider
the Mellin-Barnes integrals

L HIJIV:(] I'(gw)
270 Jp, [T, T (dyw)
6
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whose poles w € I1,, are atmost of order u, — v,. On calculating its residues, we obtain a
subspace of solutions to (1.3) of dimension Q™ =" _ (1n — va). O

This immediately gives the following:

Corollary 2.5. There is a basis
X(2) = (Xi(2),... Xq(2))

of solutions to (1.3) such that the monodromy around s = 0 is given by
X(z) = X(2) - Eyp.
Set 0p =0 and o; = >\ _ jiq fori=1,....p.
Lemma 2.6. X,,(2) is singular at z =1 for any 1 <i < p.
Proof. Assume that X, (z) is holomorphic at z = 1. Since X,,(2) is a solution to (1.3), its
only possible singular points on C are z = 0 and 1, so that 277 X, (z) is in fact an entire
function. Since (1.3) has a regular singularity at infinity, X,,(z) has at most polynomial

growth at infinity. This implies that 277 X,, (2) is a polynomial, which cannot be the case
since the series (1.2) defining X,,(z) around the origin is infinite. O

Lemma 2.7. There is a fundamental solution Y (2) = (Y1(2),...,Yo(2)) of (1.3) around
z =1 such that Y;(z) is holomorphic fori=1,...,Q — 1.

Proof. We prove the following stronger result; Y; has a series expansion
Yi=(-1""Y Gu(z-1)"
m>0
fori=1,...,Q — 1, and Y(z) has the series expansion
Yo(2)=(2—1)"7 ZG' )m+ZG;§1(2— nm
m>0 m>0

when n is even, and

Yo(2)=(z—1)"7 “log(z — 1) (ZG' z—1) >+ZG" z—1)"

m>0 m>0
when n is odd. Since () — 2 is the largest exponent, one can find a series solution
Yoo =(2=192> Gu(z—-1)"
m>0

0 (1.3). Then one can remove a common factor in (1.3) from the left to obtain a differ-
ential equation, whose set of local exponents at z = 1 is given by

n—1
0,1,... -3 )
{’7 7@ ) 2 }

Now @) — 3 is the largest exponent, and one can find a series solution

Yoo = (2= 1> Gu(z—1)"

m>0

to this equation. One can continue this process until the differential equation becomes irre-

ducible one with the rank Q"*? whose set of exponents is given by {O, 1,...,Qmt —2, "T_l} .
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This irreducible differential equation describes the period of the Calabi-Yau manifold ob-
tained by compactifying Y; (cf. [CG11, Theorem 1.1]). This Calabi-Yau manifold has an
ordinary double point at z = 1, and the period integral along the vanishing cycle gives the
singular solution Yy (z), while integrals against classes orthogonal to the vanishing cycle
give holomorphic solutions Y (2), ..., Ygrea_1(2). O

Lemma 2.6 and Lemma 2.7 implies the following:

Lemma 2.8. One can choose a fundamental solution Y (z) = (Y1(2),...,Yy(2)) around
z =1 so that the connection matriz
(2.2) X(z)=Y(2) Ly
15 given by
1 0 0 O
0 1 0 0
(2:3) Li=1: &
0o 0 --- 1 0
cr cy o0 Ccg-1 1

where ¢,, 0 for anyi=1,...,p.

When 7 is odd, the monodromy of Yy around s =1 is given by
Yo(2) = Yo(2) + 2nv/=1(z = )"V N " @) (2 — 1),
m=0

The second term is holomorphic at z = 1 and can be expressed as a linear combination
of Y1(2),...,Yp-1(2). Hence the monodromy around z = 1 is given by

Y(2) > Y(2) E;

where
10 - 0 4
01 - 0 d
E, = :
00 1 C’Q_l
0 0 - 0 1

When n is even,
Yo(z) = —Yo(2) +2)> G (= = 1)™,
m=0

so that the monodromy around z = 1 is given by

Y(z) > Y(2)- Er.

where
10 0
01 0 d
El — . E . .
00 - 1 o,y
00 0 -1



Note that the monodromy of Y (z) around z = 0 is given by
Y(2)=X(z) L’
— X(2)-Ey-L7'=Y(2)-Ly-Ey- L%
By a straightforward calculation, we have the following:

Proposition 2.9. The monodromy matrices hy, hy and hy around z =0, 1 and oo with
respect to the basis Y (2) of solutions of (1.3) are given by

0O 0 --- 0
ho=E,+ | ,
0 0 O 0 --- 0
Yo Y2 o YQ
10 0 a1
01 0 g
hfl = S ’
00 - 1 go
00 -~ 0 (—1)n!
0 0 0 oy
0 0 0 ¢
h;ol = ho + ) .2
00 --- 0 dg
Lemma 2.10. Let v = (vq,...,v9)T be a column vector and define a QQ x Q matriz by

T = (v,hg-v,...,hE " v).

Then one has
p

detT = + H (eq — eg)tahe . H(vgkﬁl)““.

1<a<p<p a=1
Proof. Let T'(a, j) € SLg(C) be the block diagonal matrix defined by
: idg—;— 0
T — Q—j—-1 . i
@i = (" )
Then
TT(LQ_]-)T(LQ_2) """ T(laQ_,ul)
T(2,Q = — 1)+ T(2,Q — 1 — pia)
'T(paQ_Up—l - 1) """ T(pal)

is a lower-triangular matrix whose i-th diagonal component for 0,1 < ¢ < g, is given by

H(ea - €ﬁ>“6 *Voq_1+1-

B<a



T

Corollary 2.11. v = (v1,...,vg)" is a cyclic vector with respect to ho if and only if the

condition

p
(24) H Voo_1+1 7é 0
a=1

is satisfied.

Lemma 2.12. If v € C? satisfies

(2.5) hl-v = hiv, i=1,2,...,Q —1,
then (2.4) holds.

Proof. Since the kernel of h! — hy is the orthogonal complement of the last coordinate
vector eg = (0,...,0,1) € C?, the equations (2.5) for v = (v,0) where v = (v, -+ ,v9_1)
can be rewritten as

Yrv=0

where ¥ is a (Q — 1) x (Q — 1) matrix whose j-th row vector is the first ) —1 components
of the last row vector of hJ. Define a block diagonal (Q — 1) x (@ — 1) matrix by

4 idg_;—o O
S(Ow]): (1 QOJ ? S/)

where S” € SL;11(C) is given by

1 0 0 O
—e, 1 0 0
S/ — . .
0O 0 - 1 0
0 O —e, 1

Then the components of the matrix
N=S(1,1)---S(A,pm —1)-S(2, 1) S(2,00 — 1) - S(3,09) - --5(3, 05 — 1)
- S(prap ) S0y —2) 3

are zero below the anti-diagonal (i.e., iij =0if i +j > @) and the i-th anti-diagonal
component ¥; g, for 0,1 <1 < 0, is given by
H(ea —e3)" ¢y, -
B>a
The (Q — 1)-st equation
(const) - vy + H(61 —eg)!Pcy v =0
p>1

together with Lemma 2.8 implies that v = 0 if v; = 0. By repeating this type of
argument, one shows that v; = 0 implies v = 0. Moreover, one can run the same argument
by interchanging the role of (vy, e, ¢,,) with (v,, |41, €a, Co.) to show that v,, 41 =0
implies v = 0. Hence a non-trivial solution to (2.5) must satisfy (2.4). O

This concludes the proof of Theorem 1.1.
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3. INVARIANTS OF THE HYPERGEOMETRIC GROUP
We prove the following in this section:
Proposition 3.1. Let ¢ = (qo,...,qn) and d = (di,...,d,) be sequences of positive

integers such that ) = Zz’]\io ¢ = Yy dr. Then the space of Q x Q matrices invariant
under the action

Hya>h: X h-X-n"
18 at most one-dimensional.

Proof. Let X be a () x ) matrix invariant under the hypergeometric group Hy 4, so that
(3.1) h-X-h' =X

for any h € Hyq. Let e; = (1,0,...,0)7 be the first coordinate vector. Since {(hZ )ie;}<,

spans C?9, X;; is determined by the H, g-invariance once we know X;; for i = 1,..., Q.
Put
(—1)"Bg 0O --- 00
(—1)"(Bg-1— Ag-1) 1 00
(3.2) hy=hyt-h = : t ..t | €Hga
(-1’ (Ba—A;) 0 -~ 10
(-1 (Bi—A) 0 - 01

and consider (3.1) for h = hy. Since

Mo

(hy- X -h1)y = ()i Xk (ha)1

=
Il

[

1

(R1) e X (= 1) N5y,

>
Il

[

1

(=DM (R )i X

B
Il

1

the first column of (3.1) reduces to
(3.3) (DM (h)n X1 + Xa) = X,

for 2 <i<@Q. lf n =N —ris even, then (3.3) implies

1
X1 = —i(hl)qul,
11



so that the space of H, g-invariants is at most one-dimensional. If N +7 is odd, then (3.3)
gives X1 = 0. Fix j # 1 such that (hy);; = (—1)"(Bg—j+1 — Ag—j+1) # 0. Since
Q
(hy - X - 0)ij = > (h)iwXua(Pa)j

=1

=
~

[

(P (X1 (ha) j1 + Xy (ha) )

e
I

1

[Me

(P1)ik(Xp1(ha)j1 + Xij)

= (h1)in (X1 (ha)j1 + Xuj) + (X (ha)j1 + Xij)
= (h1)uX1; + Xa (k) + Xij,

Il
—

the j-th column of (3.1) gives
(h1)inX1j + (h1)n1 X =0
for 2 <14 < Q. Since (h1)j1 # 0, one obtains

(h1) 1
o (h)p Y
for 2 <1 < @, so that the space of H-invariants is at most one-dimensional also in this
case. 0]

4. COHERENT SHEAVES ON CALABI-YAU COMPLETE INTERSECTIONS IN WEIGHTED
PROJECTIVE SPACES

We prove the H, g-invariance of the Gram matrix in Theorem 1.2 in this section. The
proof is closely related to the discussion of Golyshev [Gol01, §1], although the use of the
right dual collection (F;)%, seems to be new.

Let Y be a smooth complete intersection of degree (dy, . . ., d,) in the weighted projective
space P = P(qo, ..., qn). We use the Koszul resolution

0— Op(~dy — - —dy) — P Os(~dy — -+ —di =~ d,)

— o — P Oe(—di —d;) — P Op(—di) — Op — Oy — 0
=1

1<i<j<r
of the structure sheaf Oy of Y to compute the derived restriction e ®p, Oy.
Let (52-)?:1 be the full strong exceptional collection on D’ coh P given as

(&r1,....89) =(0,...,0(Q — 1)),
and (Fi, ..., Fg) be its right dual exceptional collection characterized by the condition
C i=y7, and k=0,
0 otherwise.

Ext*(Eg_is1, Fj) = {

Note that F; = Op(—1)[N] and Fy = & = Op. The Euler form on the Grothendieck

group K (P) defined by (1.1) is neither symmetric nor anti-symmetric, whereas that on
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K (Y) is either symmetric or anti-symmetric depending on the dimension of Y. The bases
{[ENL, and {[F]}L, of K(P) are dual to each other in the sense that

X(Eqit1, Fj) = bij-

We will write the restrictions of & and F; to Y as &; and F; respectively. Unlike {[£;]}<,

and {[F]}<,, {[E1L, and {[F,]}2, are not bases of K(Y), and their images in the
numerical Grothendieck group are linearly dependent. Put

Yij = X([?i]v []_:j])

and let (a;;)?,_, be the transformation matrix between two bases {[£]}%, and {[Fi]}<,

so that

i,7=1

Q

F] = [Elaji

j=1
We prove the following in this section:

Proposition 4.1. X is an invariant of the hypergeometric group Hg.q.
We divide the proof into three steps.

Lemma 4.2. Let & be an autoequivalence of D’ cohY such that its action on {[F;]}%,
15 given by
Q

(Fil =) hifFj).

j=1
Then X is invariant under the action of h = (h,-j)?jzl;
X=h-X-n".

Proof. Since an autoequivalence ® induces an isometry of K (Y'), one has

forany 1 <14,7 < Q. O

Remark 4.3. Since {[F;]}%, are not linearly independent, the choice of A in Lemma 4.2
is not unique.

Lemma 4.4. The action of the autoequivalence of DPcohY defined by the tensor product
with Oy (=1) on {F;}L, is given by hy;
Q

[Fi ® Oy(-1)] = Z(ho)z‘j [Fj].
13



Proof. Since tensor product with O(—1) commutes with restriction, it suffices to show

Q
[Fi ® Op(—=1)] = > (ho)i;[Fj].

j=1
Since {[€g—i+1]}L, and {[F]}2, are dual bases, this is equivalent to

Q
(4.1) Eq-inn®O(=1)] = [Eq-js1l(hg");i-

=1
Recall from (1.7) that
(hg')ji = 8jie1 — Gi@Bo—ji-
Since & = O(i — 1), Equation (4.1) for i # @ gives
Op(Q —1) @ Op(—1) = Op(Q — i — 1),
which is obvious. Equation (4.1) for i = Q) gives

Q
[Op(=1)] + Z Bg-j+1[0p(Q — j)] = 0,

j=1
which is Op(—1) times the relation
[Op] + B1[Op(1)] + - - + Bo-1[Op(Q — 1)] + BolOp(Q)] = 0

coming from the exact sequence

N N
0—)0]}9—)@0]}9(%)—) @ Op(qi +q;) = -+ — Op <qu) —0

i=0 0<i<j<N
obtained by sheafifying the Koszul resolution
0> AV ®@Sym*V* —»--- = A*V ® Sym* V*
-V ®Sym*V* = Sym*"V* - C — 0,
where V' is a graded vector space such that P = Proj(Sym”* V*). O
Lemma 4.5. The action of the autoequivalence of D°cohY given by the dual spherical
twist T%l along F is given on {7—",}?:1 by hi;
Q

(T (F)] = (h)ilF;)-

1=1

Proof. Recall that for a spherical object £ and an object F, the dual spherical twist T F
of F along & is defined as the mapping cone

T¢ F = {F — hom(F,&)" @ F}

of the dual evaluation map. Since the induced action on the Grothendieck group is given
by the reflection

[T (F)] = [F] = x(F, &) €],
it suffices to show that

(4.2) (h1)ij = 0i5 — Xi16j1.
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Recall from (3.2) that
(=1)"Bq i=j=1,
(h)iy = 4 6 j#1,
(=1)"(Bg-i+1 — Ag-i+1) t#landj=1.
Equation (4.2) for j # 1 is obvious, and that for i = j = 1 follows from
(—1)"Bg = (—1)7 N+l = (—1)N=r+1 = (_1)n+d

— 0 nis odd,
X = {

and

2 nis even.

To prove (4.2) for i # 1 and j = 1, one can use
Q Q
X(Fi(1) =D x((hg )i Fy) = Y (hg igx(E1, Fy) = (hl)ig = —Bg-is1-
j=1

=1

X(Fi(4)) = x(O(=7), Fi) = x(E-j1, Fi) = 0Qj.i

<

= X(F(D)) = > x(FQ=d))+ > X(Fill—dp—dy))

k=1 1<k<I<r
e CE( s )
= —Bg_is1 — Y Og-a+1it ¥ Og-de—diri—+ (—1) g, —mdrt1.
k=1 1<k<I<r
=—Bg-it1 — Z 0Q—it+1,dy, T+ Z 0q-ittdprd, — T (= 1) 00— it 1,ds 4+
k=1 1<k<i<r
= —Bg_it1 + Ag—it+1,
where we have used (1.8) in the last equality. O

5. MIRROR MANIFOLDS AND STOKES MATRICES

In this section, we discuss the relation between the Gram matrix in Theorem 1.2 in
the case when Y is a hypersurface and the Stokes matrix for the quantum cohomology
of the weighted projective space. By [CLCT09, Corollary 1.8], the quantum differential
equation for the small J-function of PP is given by

n gq—1 a
H H <in8_t1 - kz) Jp = " Jp,
1

1=0 k=0
5



where t; is the flat coordinate associated with the positive generator of H?(P;Z) C
H:, (P;C) and z is the quantization parameter. It follows that the stationary-phase
integrals

(51) Jz(ch):/ 6f/ZQ
r;

span the identity component of the space of flat sections of the first structure connection,
where f is the function f(z) = 3. ga; on

T = {(z0,...,zy5) € (CHNT| 2L g = et}

Q is the holomorphic volume form Q = dzg A --- A dzy /d(z? - - - 2%) on T, and {I;}<,
is a basis of flat sections of the local system whose fiber is the relative homology group
Hy(T, Re(f/z) < 0;Z).

The function f has @) critical points

(t1—2irv=1)/Q | (1

pi=e ooy 1), i=1,...,Q

with critical values
() = Qeln2m/ 02,

where the minus sign comes from the clockwise order on the distinguished set (ci)?zl
of vanishing paths, which we choose as straight line segments from the origin to the
critical values as in Figure 5.1. See e.g. [AGZVS88]| for vanishing cycles and the Picard-
Lefschetz formula. Let (%-)Z-Q:1 be the corresponding distinguished basis of vanishing cycles
in Hy_,(f7'(0); Z). We choose Lefschetz thimbles (I';)<, as in Figure 5.2, which gives
a basis of the relative homology group Hy (T, Re(f/z) < 0;Z) for arg(z) > 0. They
corresponds to the full exceptional collection (F;)%, in the derived category of coherent
sheaves on P. The thimbles (I})%, shown in dotted lines are the dual Lefschetz thimbles,
which is a basis of Hy (T, Re(f/z) < 0;Z) for arg(z) < 0 and correspond to the dual
exceptional collection (&)%,. The stationary-phase integral (5.1) is the Laplace transform

Ji(tl;z):/es/zfi(tl;s)ds

4;

of the period integral

Tit:s) = / a/df,
Y Cf1(s)

where ¢; is a path on the s-plane starting from a critical value underlying the Lefschetz
thimble T'; and Q/df is the Gelfand-Leray form on f~!(s).

The Stokes matrix (Sz‘j),%:l is a part of the monodromy data for the stationary-phase
integrals in (5.1), which is related to intersection numbers of vanishing cycles as fol-
lows (cf. e.g. [Dub98, Section 4.1] or [Ued05, Section 5]): Let (F;r)?zl be a basis of
HN(T, Re(f/2) < 0;Z) for arg(z) > 0, which is obtained from the basis (F’Qﬂ_i)?zl of
Hy(T, Re(f/z) < 0;Z) for arg(z) < 0 by parallel transport along a path in the upper
half plane {z € C* | Jmz > 0} with respect to the Gauss-Manin connection on the
relative homology bundle. Then the Stokes matrix is given by

Q
i=1

16



CQ—1

1 CQ

C1

FIGURE 5.1. Vanishing pathls/
Q

FIGURE 5.2. Lefschetz thimbles

On the other hand, Picard-Lefschetz formula (see e.g. [Pha85, Ebe87, AGZVS8S)|) gives

IF =T = ()T
i<j
where (v;,7;) = (=1)NWVHD/2(5, 0 4,) is (=1)NOFD/2 times the intersection number of
vanishing cycles 7; and ;. This shows that

Sij _ {(7277]) <],

0;i otherwise.

Simultaneous multiplication z; — ax; by a constant a € C* induces an isomorphism
from f1(s) at e = a to f~'(as) at e'' = a%a, so that the period integral I;(s;t;)
depends only on the ratio of s¢ and e";

N
L(sit) = (1), t=AQe" /s, Azﬂqx/@@.
v=0

Here, the factor Q@ is chosen so that the critical values s = f(p;) go to t = A\. For any
fixed value of t;, the function E(s; t1) is holomorphic at s = 0 and has singularities at
s = oo and the critical values s = f(p;). On the other hand, the function I;(t) satisfies
the irreducible hypergeometric differential equation H*4/;(¢) = 0 and has singularites at
t =0, A and co. The singularities of ;(¢) at ¢ = 0 and A come from those of I;(s; ),

whereas the singularity at ¢ = co comes from the Q-fold Kummer covering ¢ ~ 1/59.
17



The irreducible local system £74 on P1\ {0, 1, 0o} associated with H™ = 0 is described
by Golyshev [Gol01] as follows: Let ¢ : Y — P be the anticanonical hypersurface and K
be the subgroup of the Grothendieck group K (PP) generated by

Since K (P) is generated by {Op(7) }icz with relations

k=0 0<j1 <+ <jpr<N

T

ReNOGIEDPC VA

k=0 1<j1<<j<r

one has an isomorphism
K(P) S Z[z, z™ Y] H (1 — %)

sending ' to [Op(')], and K is isomorphic to the subgroup of this group generated by
' [T (1 - x%) for i € Z. It follows that the rank of K(Y) is given by

N r
Q™ = Q — deg [gcd (H(l — %), H(l - :cdf)>] :

i=0 j=1
Let I be the local system associated with K ®7 C such that the monodromy at the
origin acts by [t.Oy (7)] — [t.Oy (i — 1)] and the monodormy at A acts by [t.Oy ()] —
[ (T%1 Oy (i))]. Since the irreducible local system £ is characterized by the eigenvalues
of the monodromy at zero and infinity together with the fact that the monodromy h;
at A is a pseudo-reflection [BH89, Theorem 3.5], one has an isomorphism of the local
systems £ and K such that the local section of £ coming from the integration along
the vanishing cycle v, corresponds to [F;] € K ®z C. By virtue of Lemmas 4.4 and 4.5,
the monodromy at infinity acts by cyclic permutation

so that the basis (v,)2, corresponds to ([F;])%, under this isomorphism. Since the
intersection form on vanishing cycles is monodromy-invariant, the Gram matrix (75, v;):;
is an invariant of H, 4 so that it must be proportional to (x(F;, F;))i; by Theorem 1.2.
The multiplicative constant can be fixed from the fact that the monodromy of £¢ at
A is the pseudo-reflection by +; and the monodromy of K at A is the pseudo-reflection
by [Fi1]. If n is even, then the multiplicative constant can also be fixed by noting that
(71,71) = 2 = x(F1, F1). It follows that the Stokes matrix is given by

Sii = (Vs vs) = X(Fi, Fy) = x(Fis Fy) + (=1)"x(F;, Fo) = x(Fi, F)
for ¢ < j, so that we have the following:

Theorem 5.1. The Stokes matrix (Sij)gjzl for the quantum cohomology of the weighted

projective space is given by the Gram matrix of the full exceptional collection (.E-)?Zl with
respect to the Euler form;

(5.2) Sij = x(Fi, F)-
18



This generalizes the case of the projective space proved in [Guz99, Tan04] and surely
known to experts (see e.g. [Iri09, Remark 4.13]). The relation between Stokes matrices and
exceptional collections originates from [CV93] and was developed by Kontsevich [Kon98],
Zaslow [Zas96]| and Dubrovin [Dub98].
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