
Binary Quadratic Forms as Dessins
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Abstract

We show that the class of every primitive indefinite binary quadratic form
is naturally represented by an infinite graph (named çark) with a unique cycle
embedded on a conformal annulus. This cycle is called the spine of the çark.
Every çark is an infinite dessin and determines an annular uniformization
of the modular curve. Every choice of a base edge of a fixed çark specifies
an indefinite binary quadratic form in the class represented by the çark. The
proper automorphism group of a form is identified with the fundamental group
of its çark. Reduced forms in the class represented by a çark correspond to
some distinguished base edges of its spine. The reduction algorithm of Gauss
is the process of moving the base edge in the direction of the spine of the çark.
Ambiguous and reciprocal classes are represented by çarks with symmetries.
Periodic çarks represent classes of non-primitive forms.

1 Introduction.

The Euclidean algorithm is the process of comparison of commensurable magni-
tudes and the modular group PSL2(Z) is the encoding of this algorithm. Since the
intellect is ultimately about comparison of magnitudes, it should come as no sur-
prise that the modular group manifests itself in diverse contexts through its action
on mathematical objects, no matter what our level of abstraction is. Together with
its action on plane lattices, among all manifestations of PSL2(Z) the following four
classical actions are of fundamental nature:

1. its left-action on the infinite trivalent plane tree,
2. its left action on the upper half plane H by Möbius transformations,
3. its right-action on the binary quadratic forms of Gauss, and
4. its left-conjugation action on itself.

In this paper we clarify some connections among these four actions. The first
action is not free on the set of neither edges nor vertices of the tree in question. In
order to make it free on the set of edges, we add the midpoints as extra vertices
thereby doubling the set of edges and call the resulting infinite bipartite tree the
Farey tree F . In fact it is possible to construct F in a purely combinatorial manner
which we will carry out in Section 2, starting from a pair of elliptic generators of

1



PSL2(Z). Now since PSL2(Z) acts on F by automorphisms; freely on the set of
edges of F , so does any subgroup Γ of PSL2(Z), and by our definition a modular
graph1 is simply a quotient graph Γ\F . This is almost the same thing as a trivalent
ribbon graph, except that we consider the midpoints as extra 2-valent vertices and
pending edges are allowed. Modular graphs parametrize subgroups of the modular
group up to conjugacy and modular graphs with a base edge classify subgroups of
the modular group.

The second action is compatible with the first one in the following sense: The tree
Ftop ⊂ H which is built as the PSL2(Z)-orbit of the arc connecting two elliptic points
on the boundary of the standard fundamental domain, is a topological realization
of the Farey tree F . Consequently, Γ\Ftop ⊂ Γ\H is a topological realization of the
graph Γ\F , as a graph embedded in the Riemann orbifold Γ\H. This latter is a
surface (i.e. it has no orbifold points) in case Γ contains no elliptics but always has
punctures due to the parabolic elements of Γ, or it has some boundary components.
These punctures are in one-to-one correspondence with the left-turn circuits in
Γ\F . Widening these punctures gives a deformation retract of the ambient orbifold
to the graph, in particular the upper half plane H retracts to the Farey tree Ftop.
To recover the (topological) orbifold from the modular graph one glues punctured
discs along the left-turn paths of the graph.

In case Γ is of finite index in PSL2(Z), the quotient Γ\H is an algebraic curve
(in fact a stack) which can be defined over a number field since it is a finite covering
of the modular curve M = PSL2(Z)\H. According to Bely̆ı’s theorem, [2], any
arithmetic surface can be defined this way, implying in particular that the action
of the absolute Galois group defined on the set of finite coverings {Γ\H → M} is
faithful. But these coverings are equivalently described by the graphs Γ\F . This
striking correspondence between combinatorics and arithmetic led Grothendieck
and his followers to study dessins (=modular graphs) from the point of view of the
action of the absolute Galois group, see [16]. However, explicit computations of
covering maps Γ\H →M required by this approach turned out to be forbiddingly
hard if one wants to go beyond some basic cases and only a few uniform theorems
could be obtained. In fact, dessins are more general graphs that correspond to
finite coverings of the thrice punctured sphere, which is equivalent to a subsystem
of coverings of M since P1\{0, 1,∞} is a degree-6 covering of M (because the
congruence subgroup of level 2 is an index-6 subgroup in the modular group). So
modular graphs include dessins and hence there is no loss of generality in considering
modular graphs.

Turning back to our four actions, in the third one the modular group acts on the
set of binary quadratic forms by acting on the pair of variables in the well-known
manner. Orbits of this action are called classes and forms in the same class are said
to be equivalent. This action was studied systematically by Gauss. Here we are
interested in the action on indefinite forms. This action always has a cyclic stabilizer

1Adding to the long list of names and equivalent/dual notions with various nuisances: cyclic
trivalent graphs, cuboid tree diagrams, Jacobi diagrams, trivalent ribbon graphs, triangulations;
more generally, maps, ribbon graphs, fat graphs, dessins, polygonal decompositions, lozenge tilings,
etc.
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group, which is called the proper automorphism group of the form and denoted
〈Mf 〉. Indefinite binary quadratic forms represent ideal classes in the quadratic
number field having the same discriminant as the form and hence are tightly related
to real quadratic number fields [5]. We provide a succinct introduction to binary
quadratic forms later in the paper.

(a) A dessin (linienzug of Klein)
from 1879 [14]

(b) A çark in its ambient
annulus

The correspondence between forms and dessins is elementary and can be de-
scribed briefly as follows: to an indefinite binary quadratic form f we associate
its proper automorphism group 〈Mf 〉 and to 〈Mf 〉 we associate the infinite graph
〈Mf 〉\F , which is called a çark2. Via the topological realization of F , this is a
graph embedded in the annulus 〈Mf 〉\H. Çarks are infinite “transcendental” graphs
whereas the dessins literature consider only finite graphs. (“transcendental” since
they correspond to non-algebraic extensions of the function field of the modular
curve). This transcendence implies that çarks go undetected in the algebraic fun-
damental group approach, nevertheless we shall see that this does not keep them
away from being arithmetic objects.

Equivalent forms have conjugate stabilizers (automorphism groups) and conju-
gate subgroups have isomorphic quotient graphs. It turns out that the set of classes
is exactly the set of orbits of hyperbolic elements of PSL2(Z) under the fourth
(conjugation) action in our list. This set of orbits can be identified with the set of
bracelet diagrams with beads of two colors.

As we shall see later in the paper, çarks provide a very nice reformulation of
various concepts pertaining to indefinite binary quadratic forms, such as reduced
forms and the reduction algorithm, ambiguous forms, reciprocal forms, the Markoff
value of a form, etc. In fact, çarks are nothing but Z-quotients of periodic rivers
of Conway [6]. However, it must be admitted that we could contribute nothing to
the classical and deep questions concerning the behavior of class numbers and the
structure of class groups. For us the importance of this elementary correspondence
between çarks and forms lies in that it suggests a concrete way to consider modular
graphs as arithmetic objects viz. Gauss’ binary quadratic forms, as it was much
solicited by Grothendieck’s dessins school.

2Turkish çark (pronounced as “chark”) is borrowed from Persian, and it has a common ety-
mology with Indian chakra, Greek kuklos and English wheel.
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To conclude, let us rephrase our main result: we show that the class of every
primitive indefinite binary quadratic form is not simply a set but it has the extra
structure of an infinite graph, namely a çark, such that the forms in the class are
identified with the edges of the graph. This graph admits a topological realization
as a subset of an annulus and explains very well some known phenomena around
Gauss’ reduction theory of indefinite binary quadratic forms. Various properties of
forms and their classes are manifested in a natural way on the çark.

2 Farey tree and modular graphs

It is well known that, see for instance [4, Excercise 2.9.1], the two elliptic transfor-
mations S(z) = −1/z and R(z) = (z−1)/z, respectively of orders 2 and 3, generate
a group of Möbius transformations which is isomorphic to the projective group of
two by two integral matrices having determinant 1, the modular group PSL2(Z). It
is also well-known that PSL2(Z) ∼= 〈S〉 ∗ 〈R〉 = Z/2Z ∗ Z/3Z. Let us now consider
the graph F (so called Farey tree), given by the following data:

E(F) = {{W} : W ∈ PSL2(Z)}
V (F) = V⊗(F) t V•(F);

where
V⊗(F) = {{W,WS} : W ∈ PSL2(Z)}, and
V•(F) = {{W,WR,WR2} : W ∈ PSL2(Z)}.

There is an edge between a vertex v = {W,WS} ∈ V⊗(F) and another vertex
v′ = {W ′,W ′R,W ′R2} if and only if {W,WS} ∩ {W ′,W ′R,W ′R2} 6= ∅ and there
are no other edges. Thus the edge connecting v and v′ is v ∩ v′, if this intersection
is non-empty. Observe that by construction the graph is bipartite. The edges
incident to the vertex {W,WR,WR2} ∈ V• are {W}, {WR}, {WR2}, and these
edges inherit a natural cyclic ordering from the vertex. Thus the Farey tree F is
an infinite bipartite ribbon graph.

The group PSL2(Z) acts on F from the left, by ribbon graph automorphisms,
where M ∈ PSL2(Z) acts by

{W} ∈ E(F) → {MW} ∈ E(F)

{W,WS} ∈ V⊗(F) → {MW,MWS} ∈ V⊗(F)

{W,WR,WR2} ∈ V•(F) → {MW,MWR,MWR2} ∈ V•(F)

Notice that the action on the set of edges is nothing but the left-regular action of
PSL2(Z) on itself and therefore is free. On the other hand the action is not free on
the set of vertices: The vertex {W,WS} is fixed by the order-2 subgroup generated
by M = WSW−1, and the vertex {W,WR,WR2}) is fixed by the order-3 subgroup
generated by M = WRW−1.

Let Γ be any subgroup of PSL2(Z). Then Γ acts on F from the left and to Γ
we associate a quotient graph Γ\F as follows:

E(Γ\F) = {Γ·{W} : W ∈ PSL2(Z)}
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V (Γ\F) = V⊗(F/Γ) ∪ V•(F/Γ);
where

V⊗(Γ\F) = {Γ·{W,WS} : W ∈ PSL2(Z)}, and
V•(Γ\F) = {Γ·{W,WR,WR2} : W ∈ PSL2(Z)}.

It is easy to see that the incidence relation induced from the Farey tree gives a well-
defined incidence relation and gives us the graph which we call a modular graph.
Thus the edge connecting the vertices v = Γ·{W,WS} and v′ = Γ·{W ′,W ′R,W ′R2}
is the intersection v ∩ v′, which is of the form Γ · {M} if non-empty. There are
no other edges. Observe that by construction the graph is bipartite. The edges
incident to the vertex Γ·{W,WR,WR2} are Γ·{W},Γ·{WR},Γ·{WR2}, and these
edges inherit a natural cyclic ordering from the vertex. Thus the Farey tree F
is an infinite bipartite ribbon graph3. In general Γ\F is a bipartite ribbon graph
possibly with pending vertices that corresponds to the conjugacy classes of elliptic
elements that Γ contains. Conversely, any connected bipartite ribbon graph G, with
V (G) = V⊗(G) t V•(G), such that every ⊗-vertex is of degree 1 or 2 and every •-
vertex is of degree 1 or 3, is modular since the universal covering of G is isomorphic
to F . As in [18], it takes a little effort to define the fundamental group of Γ\F so
that there is a canonical isomorphism π1(Γ\F ,Γ ·{I}) ' Γ < PSL2(Z), with the
canonical choice of Γ·{I} as a base edge. In general, subgroups Γ of the modular
group (or equivalently the fundamental groups π1(Γ\F)) are free products of copies
of Z, Z/2Z and Z/3Z, see [15]. Note that two distinct isomorphic subgroups Γ1,
Γ2 of the modular group may give rise to non-isomorphic ribbon graphs Γ1\F and
Γ2\F . In other words, the fundamental group does not characterize the graph.
Another basic invariant of Γ\F is its genus, which is defined to be the genus of the
surface constructed bu gluing discs along right-turn paths. This genus is the same
as the genus of the algebraic curve H/Γ.

The set of edges of Γ\F is identified with the set of right-cosets of Γ, so that
the graph Γ\F has [Γ : PSL2(Z)] many edges. In case Γ is a finite index subgroup,
the graph Γ\F is finite. In case Γ = PSL2(Z), the quotient graph PSL2(Z)\F is a
graph with one edge that looks like as follows:

PSL2(Z)·{I,S}
⊗

PSL2(Z)·{I}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PSL2(Z)·{I,R,R2}•

Figure 1: The modular arc.

We call this graph the modular arc. It is a graph whose fundamental group is
PSL2(Z) and whose universal cover is the Farey tree F . In other words modular
graphs are coverings of the modular arc. If we consider the action of the modular
group on the topological realization Ftop of F mentioned in the introduction, the
topological realization of PSL2(Z)\F is the arc PSL2(Z)\Ftop in the modular curve
connecting two elliptic points.

Every modular graph Γ\F has a canonical “analytical” realization Γ\Ftop on
the Riemann surface Γ\H with edges being geodesic arcs. Equivalently, these edges

3The ribbon graph structure around vertices of degree 2 is trivial.
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Figure 2: (Right) The fundamental region for the modular curve in the upper half plane model. (Left)
The modular curve. Note that there are two triangles, the second is on the back of the page, glued to
this one. sagdaki sekilin kose noktalari belirtilecek, soldakinde oldugu gibi

are lifts of the modular arc by Γ\H −→ PSL2(Z)\H. If instead we lift the geodesic
arc connecting the ⊗- elliptic point to the cusp to the surface Γ\H, then we obtain
another graph on the surface, which is called an ideal triangulation. Lifting the
remaining geodesic arc gives rise to yet another type of graph, called a lozenge
tiling. So there is a triality, not just duality, of these graphs.

(a) A triangulation, (b) its dual graph, (c) and its lozenge

Figure 3: Triality of graphs

In topology, there is a well-known correspondence between subgroups of the
fundamental group of a space and the coverings of that space. The following two
results are orbifold (or “stacky”) analogues of this correspondence for coverings of
the modular curve, stated in terms of graphs. For more details on fundamental
groups and covering theory of graphs see [18].

Proposition 2.1. If Γ1 and Γ2 are conjugate subgroups of PSL2(Z), then the graphs
Γ1\F and Γ2\F are isomorphic as ribbon graphs. Hence there is a 1-1 correspon-
dence between modular graphs and conjugacy classes of subgroups of the modular
group.

Proof. Let Γ2 = MΓ1M
−1. The desired isomorphism is then the map

ϕ : Γ1 ·{W} ∈ E(Γ1\F)→ Γ2 ·{MW} ∈ E(Γ2\F).

Note that one has ϕ(Γ1·{I}) = Γ2·{M}. Suppose now that ϕ : E(Γ1\F)→ E(Γ2\F)
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is a ribbon graph isomorphism and let ϕ(Γ1 · {I}) = Γ2 · {M}. This induce an
isomorphism of fundamental groups

ϕ∗ : π1(Γ1\F ,Γ1 ·{I}) ' π1(Γ2\F ,Γ2 ·{M})

Since ϕ is a ribbon graph isomorphism, these two groups are also isomorphic as
subgroups of the modular group. The former group is canonically isomorphic to Γ1

a whereas the latter group is canonically isomorphic to

M−1π1(Γ2\F ,Γ2 ·{I})M 'M−1Γ2M

Therefore modular graphs parametrize conjugacy classes of subgroups of the
modular group, whereas the edges of a modular graph parametrize subgroups in
the conjugacy class represented by the modular graph, and we get:

Theorem 2.2. There is a 1-1 correspondence between modular graphs with a base
edge (G, e) (modulo ribbon graph isomorphisms of pairs (G, e)) and subgroups of the
modular group.

3 Çarks

A çark is a modular graph which is of the form ÇM := 〈M〉\F where M is a
hyperbolic element of the modular group. One has

π1(〈M〉\F) = 〈M〉 ' Z,

so the çark 〈W 〉\F is a graph with only one circuit, which we call the spine of the
çark. Every çark has a canonical realization as a graph 〈M〉\Ftop embedded in
the surface 〈M〉\H, which is an annulus since M is hyperbolic. In fact 〈M〉\H is
the annular uniformization of the modular curveM corresponding to M ∈ π1(M).
Again by hyperbolicity of M , this graph will have infinite “Farey branches” attached
to the spine in the direction of both of the boundary components of the annulus4.
By Proposition 2.1 the graphs ÇM and ÇXMX−1 are isomorphic for every element
X of the modular group and by Theorem 2.2 we deduce the following result, see [7]:

Corollary 3.1. There are one-to-one correspondences between

i. çarks and conjugacy classes of subgroups of the modular group generated by a
single hyperbolic element, and

ii. çarks with a base edge and subgroups of the modular group generated by a
single hyperbolic element.

4If M is parabolic, then 〈W 〉\F has Farey branches attached to the spine in only one direction,
and its topological realization 〈M〉\Ftop sits on a punctured disc. If M is elliptic, 〈W 〉\F is a tree
with a pending edge which abut at a vertex of type ⊗ when M is of order 2 and of type • when
M is of order 3. Its topological realization 〈M〉\Ftop sits on a disc with an orbifold point.
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Figure 4: The çark F/〈SR2SR〉.

Corollary 3.2. There are one-to-one correspondences between

i. hyperbolic elements of the modular group and directed çarks with a base edge,
and

ii. conjugacy classes of hyperbolic elements of the modular group and directed
çarks.

3.1 Necklaces and Bracelets

Çarks are infinite graphs, and according to our definition each edge of a çark carries
a name which is an infinite coset. In fact all the combinatorial information of a çark
can be encoded in a finite storage as follows: First remove all ⊗-vertices of the çark.
Next, turn once around the spine, whenever you meet a •-vertex on which a branch
attached by R, cut that branch and tag that •-vertex with a “0”, tagging all the
remaining vertices by a “1” similarly cutting the branches attached to them. We
obtain a finite graph called a binary bracelet which is by definition an equivalence
class of binary strings under cyclic permutations (i.e. rotations) and reversals.
Conversely, by using the convention 0 ↔ R and 1 ↔ R2 we can reconstruct the
çark from its bracelet.

Rotations and reversals generate a finite dihedral group, and a binary bracelet
may equivalently be described as an orbit of this action. For n = 1, 2, ..., 15 the
number of binary bracelets is

2, 3, 4, 6, 8, 13, 18, 30, 46, 78, 126, 224, 380, 687, 1224.

This is sequence A000029 (M0563) in OEIS [1]. The number of binary bracelets
(çarks) of length n is

B(n) =

{
1
2N(n) + 3

42n/2 if n is even
1
2N(n) + 1

22(n+1)/2 if n is odd,

where N(n) is the number of binary necklaces of length n. An equivalence class of
binary strings under rotations (excluding thus reversals) is called a binary necklace,
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Figure 5: From çarks to bracelets

also called a cyclic binary word. They are thus orbits of words under the action of a
cyclic group and they correspond to directed çarks. For n = 1, 2, ..., 15 the number
of binary necklaces of length n is

N(n) = 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192,

which is sequence A000031 (M0564) in OEIS. The number of necklaces (directed
çarks) of length n is given by MacMahon’s formula from 1892 (also called Witt’s
formula) (see [3], [17])

N(n) =
1

n

∑
d|n

ϕ(d)2n/d =
1

n

n∑
j=1

2gcd(j,n)

where ϕ is Euler’s toitent function.
Aperodic binary necklaces correspond to primitive directed çarks. For n =

1, 2, ..., 15 the number of aperiodic necklaces of length n is

L(n) = 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182,

which is sequence A000031 (M0564) in the database. There is a formula for the
number of aperiodic necklaces of length n in terms of Möbius’ function µ:

L(n) =
1

n

∑
d|n

µ(d)2n/d =
1

n

∑
d|n

µ(n/d)2d

As we said, binary necklaces (=cyclic binary words=directed çarks) may be
viewed as orbits of words under the action of the cyclic group. Choosing an or-
dering of our letters {0, 1} (i.e. 0 < 1) and imposing the lexicographic ordering of
the words, one may choose a minimal representative in each orbit. The minimal
representative of a primitive (aperiodic) word is called a Lyndon word. They were
first studied in connection with the construction of bases for free lie algebras and
they appear in numerous contexts. In our case they are

0, 1, 01, 001, 011, 0001, 0011, 0111, 00001, 00011, 00101, 00111, 01011, 01111 . . .
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One can similarly find representatives for aperiodic binary bracelets (=primitive
indefinite binary quadratic forms; see below). There are effective algorithms to list
all primitive necklaces and bracelets up to a given length (i.e. Duval’s algorithm
[8], the algorithm due to Fredricksen, Kessler and Maiorana [9], Sawada’s algorithm
[20], etc). Translated into the language of binary quadratic forms, this means that it
is possible to single out a unique reduced representative in each class of a primitive
indefinite binary quadratic form and that it is possible to effectively enumerate all
classes of primitive indefinite binary quadratic forms by specifying those reduced
representatives.

To sum up, we may represent primitive çarks by primitive bracelets. In order
to shorten this representation further, we may count the number of consecutive 0’s
and 1’s and represent çarks as sequences of natural numbers (n0, n1, . . . n2k)0,1, if
we agree that5 this sequence encodes a bracelet that starts with a 0 if the exponent
is 0 and 1 if the exponent is 1. This representation is directly connected to the
“minus” continued fractions (see Zagier [22]).

A primitive word may have two types of symmetries: invariance under the swap
of symbols 0 ↔ 1 and invariance under reversal, i.e. palindromic symmetry. The
first symmetry corresponds to ambiguous binary quadratic forms and the second
symmetry corresponds to reciprocal binary quadratic forms, as we shall see. The
swap of symbols 0↔ 1 corresponds to inversion in the class group.

3.2 Çark Invariants

There are several natural invariants associated to a çark Ç. The first invariant that
comes to mind is the combinatorial length lc(Ç ) of its spine. A hyperbolic invariant
of a çark is the metric length lh(Ç ) of the closed geodesic in the annular surface
under its hyperbolic metric induced by the çark. A conformal invariant of a çark
is the modulus m(Ç ) of the associated annulus. Finally, the discriminant ∆(Ç ) of
the associated form and the trace τ(Ç ) of the associated matrix are two arithmetic
invariants with ∆ = τ2 − 4. One has

lh(Ç ) = 2 arccosh (τ/2), m(Ç ) = exp

(
π2

log | τ±
√

∆
2 |

)
The modulus is found as follows: Any hyperbolic element M ∈ PSL2(R) is conju-
gate to an element of the form

N := XMX−1 =

[
α 0
0 1/α

]
where α is the multiplier of M . Since the trace is invariant under conjugation, one

has τ := tr(M) = α+ 1/α =⇒ α2 − τα+ 1 = 0 =⇒ α = τ±
√
τ2−4
2 .

Now N acts by Möbius transformation z 7→ α2z, and the quotient map is f(z) =

z2πi/ logα2

with the annulus f(H) = {z : e−2π2/ logα2

< |z| < 1} as its image. Hence

the modulus of the ambient annulus of the çark is e2π2/ logα2

= eπ
2/ log |α|.

5Note that a Lyndon word always start with a 0 and ends with a 1.
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4 Binary Quadratic Forms and Çarks

A binary quadratic form is a homogeneous function of degree two in two variables
f(x, y) = Ax2 +Bxy + Cy2 (denoted f = (A,B,C) or in the matrix form:

Wf =

(
A B/2
B/2 C

)
(4.1)

so that f(x, y) = (x, y)Wf (x, y)t). If the coefficients A,B,C are integers the
form is called integral with discriminant ∆(f) = B2 − 4AC. If f is integral and
gcd(A,B,C) = 1 then f is called primitive. Following Gauss we will call a form
f = (A,B,C) ambiguous if B = kA for some k ∈ Z. Finally a form f = (A,B,C)
will be referred to as reciprocal whenever C = −A, [19].

Note that ∆(f) = −4 det(Wf ). Given a symmetric two by two matrix we write
fW to denote the binary quadratic form associated to W . Recall that a form f is
called

• positive definite if and only if ∆(f) < 0 and A > 0,

• negative definite if and only if ∆(f) < 0 and 0 > A,

• indefinite if and only if ∆(f) > 0.

The group PGL2(Z) acts on the set of all integral binary quadratic forms by

Forms × PGL(2,Z)→Forms

(f, U) 7→U ·f := detUf(U(x, y))

= (detU)(x, y)U tWfU(x, y)t

We call two binary quadratic forms equivalent if they belong to the same PGL2(Z)
orbit under the above action, under which discriminant is invariant. In particular,
two binary quadratic forms are said to be properly equivalent if they belong to the
same PSL2(Z) orbit. Let us denote the PSL2(Z)-orbit (or the equivalence class)
of f by [f ]. The stabilizer of f is called its automorphism group and denoted by
Aut(f). If we restrict the action to PSL2(Z) then the stabilizer is called the proper
automorphism group of f and denoted by Aut+(f). Elements of Aut(f), (respec-
tively Aut+(f)) are called automorphisms (respectively proper automorphisms) of
f . For a positive definite binary quadratic form f , the group Aut(f) is trivial un-
less ∆(f) = −3 or −4; Aut(f) ' Z/4Z if ∆(f) = −4 and Aut(f) ' Z/6Z in case
∆(f) = −3, [4, p.29]. On the other hand, for an indefinite binary quadratic form
one has Aut(f) ' Z/2Z⊕ Z and Aut+(f) ' Z.

Given an indefinite binary quadratic form f = (A,B,C) a generator of its proper
automorphism group will be called its fundamental automorphism. Note that there
are two fundamental automorphisms, one being Mf , the other being its inverse,
M−1
f . Every integral solution (α, β) of Pell’s equation:

X2 + ∆(f)Y 2 = +4?????????????????? (4.2)
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corresponds to an automorphism of f given by the matrix:(
x−By

2 −Cy
Ay x+yB

2

)
.

The fundamental automorphism is the one having minimal β [4, Proposition 6.12.7].

Conversely, to any given hyperbolic element, say M =

(
p q
r s

)
∈ PSL2(Z) let

us associate the following binary quadratic form:

fM =
sgn(p+ s)

gcd(q, s− p, r)
(
r, s− p,−q

)
(4.3)

Observe first that M → fM is well-defined and that its image is always primitive
and indefinite. At this point let us state a direct consequence of Theorem ??:

Corollary 4.1. The maps 〈M〉\F ←→M −→ fM defines a surjection from the set
of oriented çarks with a base edge to primitive indefinite binary quadratic forms.

Proof. We saw that an oriented çark with a base edge determines a hyperbolic
element of PSL2(Z). And this element in turn determines an indefinite binary
quadratic form via M → fM . Conversely, given a primitive indefinite binary
quadratic form f = (A,B,C) to find β ∈ Z such that the matrix(

β A
−C B + β

)
∈ PSL2(Z)

we look at solutions (x, y) of Pell’s equation X2+∆(f)Y 2 = 4????????????????????.
Using any such y we construct the hyperbolic element:

Mf =

(
β yC
yA yB + β

)
,

where β = −yB±x
2 . Both choices of the sign produces a matrix which maps onto f .

In fact, the two matrices are inverses of each other in PSL2(Z).

Example 4.1. Consider the form (1, 7,−1). It has discriminant 53. The pair (51, 7)
is a solution to the Pell equation X2 − 53Y 2 = 4. The two β values corresponding
to this solution are −50 and 1. Plugging these two values into the matrix above we
get:

Mo =

(
1 7
7 50

)
and M−1

o =

(
−50 7

7 −1

)
.

The pair (2599, 357) is also a solution to the above Pell equation, and the corre-
sponding matrices are:(

50 357
357 2549

)
and

(
−2549 357

357 −50

)
.
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We would like to remark also that

M2
o =

(
50 357
357 2549

)
.

In fact, Mo is one of the two fundamental automorphisms of f .

Note that the map W 7→ fW is infinite to one because any indefinite binary
quadratic form has infinite automorphism group. Any matrix in the automorphism
group of f maps onto f .

Let D := {d ∈ Z>0 : d ≡ 0, 1 (mod 4), d is not a square}. Recall the following:

Proposition 4.2 ([19]). There is a bijection between the set of conjugacy classes
of primitive hyperbolic elements in PSL2(Z) and the set of classes of primitive bi-
nary quadratic forms of discriminant ∆ ∈ D; where a hyperbolic element is called
primitive if it is not a power of another hyperbolic element.

4.1 Reduction Theory of Binary Quadratic Forms

We say that an indefinite binary quadratic form f is reduced if the geodesic in H
connecting the two real fixed points of Wf , called the axis of Wf and denoted by
aWf

, intersects with the fundamental domain

f := {z ∈ H : |z| ≥ 1, |Re(z)| < 1

2
},

of the modular group. Remark that this definition is equivalent to the one given by
Gauss in [10]. The caveat of indefinite binary quadratic forms is that the PSL2(Z)
class of of such a form contains more than one reduced form as opposed to definite
binary quadratic forms in which case the reduced representative is unique, see [4,
Section 6.8] or [5, Section 5.6] for further discussion.

Given a primitive indefinite binary quadratic form, call f = (A,B,C), of dis-
criminant ∆ ∈ D, f is reduced if |

√
∆−2|A|| < B <

√
∆, the equivalence of the two

definitions we use is folklore. Our aim is now to reveal the reduction method due
to Gauss in terms of çarks. For this let us first note that while proving Theorem ??
we have seen that every edge of a çark may be labeled with a unique coset of the
corresponding subgroup. Thus binary quadratic forms may be used to label the
edges of the çark by Corollary ??.

Given a hyperbolic element W as a word in R, R2 and S we define the length of
W , `(W ), to be the total number of appearances of R, R2 and S. For instance for
W = RSR2S(RS)2, `(W ) = 8. Before stating the next lemma let us recall that the
classical reduction process is simply the process of acting on a non-reduced form
f = (A,B,C) by the matrix

ρ(f) =

(
0 1
1 t(f)

)
= S(RS)t(f);

where t(f) =

 sign(c)
⌊

b
2|c|

⌋
if |c| ≥

√
∆

sign(c)
⌊√

∆+b
2|c|

⌋
if |c| <

√
∆

.
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Lemma 4.3. Given an indefinite binary quadratic form (reduced or non-reduced),
f , let Wf be a primitive hyperbolic element corresponding to f . Then

`(Wρ(f)·f ) ≤ `(Wf ). (4.4)

Let us assume from now on that our çarks are embedded into an annulus, with
an orientation which we will assume to be the usual one. In addition we also
introduce the following shorter notation for our çarks: in traversing the spine (in
either direction) if there are n consecutive Farey branches in the direction of the
same boundary component, then we denote this as a single Farey component and
write n on the corresponding branch, see Figure 5. We will call such çarks weighted.

Let us make the following

Definition 4.1. Let Ç be a weighted çark. Edges of the spine are called semi-
reduced. In particular, an edge on the spine of Ç is called reduced if and only if
it is on the either side of a Farey component which is in the direction of the inner
boundary component.

Figure 6: A çark and its short form.

Remark that as we have fixed our orientation to be the usual one, there is no
ambiguity in this definition. In addition note that semi-reduced edges are in one
to one correspondence between the forms f = (A,B,C) in a given class for which
AC < 0. Edges labeled by binary quadratic forms f = (A,B,C) for which both
A > 0 and C > 0 are on a Farey component in the direction of the inner boundary.
Likewise, whenever A < 0 as well as C the edge is on a Farey component in the
direction of outer boundary of the annulus. We are now ready to describe reduction
theory of binary quadratic forms in terms of çarks. We have seen that multiplication
by the matrix ρ(f) is, in general, the process of moving the base edge of the çark to
the spine as a result of Lemma 4.3. However, this is not enough. That is, not every
edge on the spine corresponds to a reduced form. Reduced forms correspond to
edges where the Farey branches switch from one boundary component to the other.
More precisely, we have:

14



Figure 7: Çark corresponding to the class represented by the form (7, 33,−15). Marked edges are
reduced.

Theorem 4.4. Reduced forms in an arbitrary indefinite binary quadratic form class
[f ] are in one to one correspondence between the reduced edges of the çark corre-
sponding to the given class.

As we have remarked the action of PSL2(Z) on binary quadratic forms is equivalent
to the change of base edge on the set of çarks. Hence the above Theorem is an
immediate consequence of the following:

Lemma 4.5. Let Çf denote the çark associated to an arbitrary indefinite binary
quadratic form f . The reduction operator ρ(f) is transitive on the set of reduced
edges of Çf .

Let us give some examples:

Example 4.2. Let us consider the form f = (7, 33,−15). It is easy to check that

f is reduced. Wf = (R2S)2 (RS)2R2S RS (R2S)7 (RS)5 =

(
−38 −195
−91 −467

)
. The

trace of the class is −505. By Gauss’ theory the class [f ] is an element in the
quadratic number field with discriminant 1509.

Example 4.3. Let ∆ = n2+4n for some positive integer n. Then the identity in the
class group is given by the çark in Figure 8a and the corresponding form is (−n, n, 1).
If ∆ = n2 +4, then the identity is represented by the form 1

n (−n, n2, n) = (1, n,−1).
The corresponding çark has two Farey branches, see Figure 8b

However, one has to admit that there are very complicated çarks representing
the identity of the class group. For instance, the çark corresponding to the form
(−7, 23, 16) has 42 Farey branches.

4.2 Ambiguous and Reciprocal forms

Let us now discuss certain symmetries of a çark. For a given çark Ç let Ç r be the
çark which is the mirror image of Ç about any line passing through the ‘center” of
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(a) Identity for ∆ = n2 + 4n. (b) Identity for ∆ = n2 + 4.

Figure 8

the spine (assuming that the Farey components coming out of the spine in its shorter
notation that we have introduced is evenly spaced). It is easy to see that both ideal
classes represented by the two çarks Ç and Ç r have the same discriminant. A
straightforward computation leads to the following:

Proposition 4.6. Given a çark Ç the binary quadratic form class represented by
Ç r is inverse of the class represented by Ç.

Example 4.4. Let us consider the form f = (−2377, 10173, 1349) having discrim-
inant 116316221. The form g = (−4027, 8915, 2287) is an element in the ideal class
represented by this form. The corresponding çarks are shown in Figure 9. The
forms are inverses of each other, see Figure 9c.

(a) Çark corresponding to f =
(−2377, 10173, 1349).

(b) Çark corresponding to

f−1 = (−4027, 8915, 2287).

(c) Çark of the product

of f × f−1.

Figure 9: Two çarks inverses of one another and their product.

Recall that Gauss has defined a binary quadratic form to be ambiguous if it
is equivalent to its inverse or equivalently if the corresponding equivalence class
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contains (a, ka, c) for some a, c and k. Following Gauss, we define a çark Ç ambigu-
ous if Ç and Ç r are isomorphic as çarks, or equivalently correspond to the same
subgroup of PSL2(Z). So from Proposition 4.6 we deduce:

Corollary 4.7. Ambiguous çarks correspond to ambiguous forms.

In addition to all the examples considered in Example 4.3, which represent ambigu-
ous classes as they are of the form (a, ka, c), let us give one more example:

Example 4.5. Consider the form f = (3, 18,−11). The form is reduced and
ambiguous as one immediately checks. The corresponding çark is given in Figure 10

Figure 10: Çark corresponding to the ambiguous form f = (3, 18,−11).

Let us now discuss “rotational” symmetries. An oriented çark with a base edge
is called primitive if and only if its spine is not periodic. Let cprim denote the set
of primitive çarks. It is easy to see that primitive hyperbolic elements6 in PSL2(Z)
correspond to primitive çarks or equivalently to prime geodesics in H.

Corollary 4.8. There is a one to one correspondence between the following two
sets:

cprim ←→
{ PSL2(Z) classes of primitive

indefinite binary quadratic forms
having discriminant ∆ ∈ D

}
Finally, let Çm denote the mirror of a given çark, that is the çark obtained

by reflecting Ç with respect to the spine. Once again observe that both Ç and
Çm have the same discriminant. In fact, an indefinite binary quadratic form say
f = (A,B,C) is given which is represented by the çark Ç then the çark Çm

represents the form f ′ = (−A,B,−C) and the same holds for every element in [f ].
We conclude that both çarks represent ideal classes that have the same order in the
class group.

6Recall that an element M ∈ PSL2(Z) is said to be primitive if it is not a positive power of
another element of the modular group.
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Let W be a hyperbolic element in PSL2(Z). In [19], Sarnak has defined W to
be reciprocal if W is conjugate to its inverse. The conjugation turns out to be done
by a unique element (up to multiplication by an element in 〈W 〉) of order 2, and
thus reciprocal elements correspond to maximal dihedral subgroups of the modular
group7. A form f = (A,B,C) is called reciprocal if C = −A. It is known that
reciprocal hyperbolic elements correspond to reciprocal indefinite binary quadratic
forms, [19]. In a similar fashion we call a çark reciprocal if Ç and (Çm)r are
isomorphic as çarks. In fact since the two operator ·m and ·r commute, if Ç is a
reciprocal çark then so is Çm.

Proposition 4.9. Reciprocal forms correspond to reciprocal çarks.

Figure 11: The graph F/〈S,R2SR〉

Figure 12: The graph F/〈RSR2, S(RSR2)S〉

Example 4.6. Consider the form f = (−8, 11, 8). The corresponding hyperbolic

element in PSL2(Z) is

(
101 −192
−192 365

)
. The corresponding çark is shown in

Figure 13, where it is easy to see that Ç and (Çm)r are same.

Example 4.7 (Reciprocal Identities). The forms f = (1, n2,−1) already appeared
in Example 4.3 are reciprocal and represent identity in the class group. Conversely,
given a form, which is both reciprocal and represents identity has to be of this form.
Hence we conclude that identity elements that are at the same time reciprocal ap-
pear only for discriminants n2+4 and cenversely. Note also that all such forms come
from the word (R2S)n(RS)n. The çarks of reciprocal identities are in Figure 8b

7Remember that çarks correspond to maximal Z subgroups of PSL2(Z).
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Figure 13: Çark corresponding to the reciprocal form f = (−8, 11, 8).

4.3 Miscellany

Binary quadratic forms is a central and classical topic and have connections to
diverse fields. Here we touch upon some of these.

4.3.1 Computational Problems

There are several important computational problems related to çarks, in connection
with the class number problems in the indefinite case. The most basic invariant of
a çark is the length of its spine. The (absolute) trace of the associated matrix is
another, much subtler invariant. We don’t know any practical means to compute
the trace from the combinatorial input (bracelet) of a çark, other then explicitly
computing the associated matrix. Similarly, given two çarks, we don’t know any
direct way of saying whether they are of the same trace or not. The problem
of listing çarks of the same trace is equivalent to the problem of computing class
numbers. Also, the Gauss product on classes of forms defines an abelian group
structure on the set çarks of the same trace, namely the class group. We have not
been successful in our attempts to reach to a new understanding of class groups in
terms of the graphical representation of their elements by çarks.

4.3.2 Closed geodesics on the modular surface.

Let us note in passing that primitive çarks parametrize closed geodesics on the
modular curve, and so çarks are closely connected to symolic dynamics on the
modular curve. [13], encoding of geodesics, and Selberg’s trace formula. [21]

4.3.3 The Markoff number of an indefinite binary quadratic form.

There is an arithmetic invariant of indefinite binary quadratic forms called the
Markoff value µ(F ) which is defined as

µ(F ) :=

√
∆(F )

m(f)
, where m(f) := min

(x,y)∈Z2\{(0,0)}
|F (x, y)|
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Alternatively one can run over the class of F and compute the minima of equivalent
forms at a fixed point p0, for example (x, y) = (0, 1). Hence the choice of this
fixed point p0 defines a function on the set of edges of the associated çark, and the
Markoff value of the form is the maximal value attained by this function defined on
the çark. There are also çarks associated to Markoff irrationalities which we call
Markoff çarks.
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Figure 14: Minimum edges of F/Aut+{(1, 0,−2)}.
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