International Journal of Mathematics © World Scientific Publishing Company

July

ON FINITE BRANCHED UNIFORMIZATIONS OF THE PROJECTIVE PLANE

A. MUHAMMED ULUDAĞ

Department of Mathematics, Faculty of Science and Letters, Galatasaray University, 34357, Ortaköy, İstanbul, Turkey muludag@gsu.edu.tr

CELAL CEM SARIOĞLU

Department of Mathematics, Faculty of Science, Dokuz Eylül University, Tinaztepe Campus, 35160, Buca, İzmir, Turkey celalcem.sarioglu@deu.edu.tr

We give a brief survey of the so-called Fenchel's problem for the projective plane, that is the problem of existence of finite Galois coverings of the complex projective plane branched along a given divisor and prove the following result: Let p, q be two integers greater than 1 and C be an irreducible plane curve. If there is a surjection of the fundamental group of the complement of C into a free product of cyclic groups of orders p and q, then there is a finite Galois covering of the projective plane branched along C with any given branching index.

Keywords: Fenchel problem; Uniformization; Branched covering; Generalized triangle group

Mathematics Subject Classification 2010: 32Q30, 57M12

1. Introduction

Let M be a complex manifold, $C_1, C_2, \cdots, C_k \subset M$ be irreducible hypersurfaces, and $C := \bigcup_{i=1}^{k} C_i$. A morphism $X \to M$ is said to be a *Galois covering of* M branched at the divisor $D := \sum_{i=1}^{k} r_i C_i$ if it is a Galois covering of $M \setminus C$ in the usual sense, and is branched along C_i with branching index $r_i \ge 2$ for $1 \le i \le k$.

Given a divisor D on M, is there a finite Galois covering $X \to M$ branched at D? This problem was proposed by Fenchel in the case where M is a Riemann surface and is completely solved in this form: With two exceptions ("bad orbifolds" of Thurston) (I) $M = \mathbb{P}^1$, D = rp and (II) $M = \mathbb{P}^1$, $D = r_1 p_1 + r_2 p_2$, $r_1 \neq r_2$, there always exists such a covering, see [2] and [5]. Here, we discuss the case $M = \mathbb{P}^2$.

Note that we are not concerned with the smoothness of the covering space X. Almost all pairs (\mathbb{P}^2, D) that we consider in this paper does not admit finite smooth uniformizations; this is why we avoid the orbifold terminology.

By the Grauert-Remmert theorem [7], any unbranched finite covering $X' \rightarrow$ $\mathbb{P}^2 \setminus C$ extends to a finite covering $X \to \mathbb{P}^2$ branched along C, which is unique up

to isomorphism. Hence, there is a one-to-one correspondance between the normal subgroups of finite index in $\pi_1(\mathbb{P}^2 \setminus C)$ and the Galois coverings $X \to \mathbb{P}^2$ branched along C. The covering space X is a possibly singular algebraic surface.

Note that any finite branched cover is dominated by a finite branched Galois cover, but this point of view seems not to be very helpful in this problem, where we want to have a control on the branch curve and the ramification indices.

Fig. 1: Meridians of C_i

The map $X \to \mathbb{P}^2$ being branched at D leads one to study the orbifold fundamental group $\pi_1^{orb}(\mathbb{P}^2, D)$ defined as follows: First take a small analytic disc Δ intersecting C_i transversally at a smooth point of C, and define a meridian of C_i to be the homotopy class in $\pi_1(\mathbb{P}^2 \setminus C, *)$ of a loop obtained by joining * to a point in $\partial \Delta$ along a path ω , turning once around $\partial \Delta$ in the positive sense, and going back to * along ω (See Fig. 1). It is well known that the group $\pi_1(\mathbb{P}^2 \setminus C)$ is generated by the meridians of C (see e.g. [22]). Define orbifold fundamental group of (\mathbb{P}^2, D) as

$$\pi_1^{orb}(\mathbb{P}^2, D) := \pi_1(\mathbb{P}^2 \setminus C) / \langle\!\langle \mu_1^{r_1}, \mu_2^{r_2} \dots, \mu_k^{r_k} \rangle\!\rangle.$$

Since any two meridians of an irreducible component of C are conjugate elements in $\mathbb{P}^2 \setminus C$, the group $\pi_1^{orb}(\mathbb{P}^2, D)$ does not depend on the particular choice of the meridians μ_i , so $\pi_1^{orb}(\mathbb{P}^2, D)$ is a projective invariant of the curve C. Moreover, Fenchel's problem has a simple formulation in terms of this invariant: Is there a surjection $\phi : \pi_1^{orb}(\mathbb{P}^2, D) \twoheadrightarrow K$ onto a finite group K such that $|\phi(\mu_i)| = r_i$? In what follows, such a surjection will be called a *good image* of $\pi_1^{orb}(\mathbb{P}^2, D)$.

There is not much hope for a complete solution of the problem for a general complex manifold M, due to two main difficulties, first being topological, the other group theoretical: Firstly, it is not easy to determine the group $\pi_1(M \setminus C)$. The Zariski-Van Kampen method provides an algorithm to compute this group for M = \mathbb{P}^2 , but does not give any further information on the gorup. Secondly, if M is a Riemann surface, then $\pi_1(M \setminus C)$ is a free group unless $C = \emptyset$, whereas even for $M = \mathbb{P}^2$, this group can be very complicated. The group $\pi_1^{orb}(\mathbb{P}^2, D)$ may even be trivial, consider for example $D = 2L_1 + 3L_2 + 5L_3$, where $L_i \subset \mathbb{P}^2$ intersect generically. The group $\pi_1(\mathbb{P}^2 \setminus C)$ in this case is the abelian group generated by μ_1 and μ_2 , with $\mu_3 = \mu_1 \mu_2$, the elements μ_i being meridians of L_i . Hence, the group

On Finite Branched Uniformizations of the Projective Plane 3

 $\pi_1^{orb}(\mathbb{P}^2, D)$ is the trivial group with the presentation

$$\langle \mu_1, \mu_2, \mu_3 \mid \mu_1^2 = \mu_2^3 = \mu_3^5 = \mu_1 \mu_2 \mu_3 = [\mu_1, \mu_2] = [\mu_2, \mu_3] = [\mu_3, \mu_1] = 1 \rangle$$

For arbitrary M, the group $\pi_1(M \setminus C)$ can also be trivial, e.g. take M to be a simply connected surface and C to be a contractible curve. This is why we shall consider Fenchel's problem for the surface $M = \mathbb{P}^2$ only. Note that, in the algebraic case, the problem in dimension ≥ 3 can be reduced to the problem in dimension 2 by Zariski's hyperplane section theorem.

Many solutions to Fenchel's problem can be obtained by considering abelian coverings. For example, if C is a smooth curve of degree d and D = nC, then $\pi_1(\mathbb{P}^2 \setminus C) \simeq \mathbb{Z}/d\mathbb{Z}$ and $\pi_1^{orb}(\mathbb{P}^2, D) \simeq \mathbb{Z}/(d, n)\mathbb{Z}$, so that one can say that our problem is solved for smooth curves. All abelian finite smooth uniformizations of projective spaces of arbitray dimension have been effectively classified in [20]. At the other extreme, one can consider C to be an arrangement of d lines, one has then $H_1(\mathbb{P}^2 \setminus C) \simeq \mathbb{Z}^{d-1}$. However, if one takes $D = 2L_1 + 3L_2 + 5L_3$, where this time both three of the lines L_i pass through a common point, then as above there is no abelian solution, whereas it is readily seen that

$$\pi_1^{orb}(\mathbb{P}^2, D) \simeq \langle \mu_1, \mu_2, \mu_3 \mid \mu_1^2 = \mu_2^3 = \mu_3^5 = \mu_1 \mu_2 \mu_3 = 1 \rangle \simeq T_{2,3,5}$$

the latter group being the triangle group, which is finite of order 60. This suggests to look for the non-abelian solutions to the problem. Note however that the corresponding affine problem in \mathbb{C}^2 has always a positive solution, given by an abelian covering.

Non-abelian solutions to Fenchel's problem have been studied mainly by Kato [9] and Namba [14]. The following result of Kato on line arrangements is well known:

Theorem 1.1 (Kato [9]). Let $\mathcal{A} = \{L_1, L_2, \ldots, L_k\}$ be a line arrangement. If on each L_i lies at least one triple or higher point of $\bigcup_{i=1}^k L_i$, then there is a finite Galois covering of \mathbb{P}^2 branched at $D = \sum_{i=1}^k r_i L_i$ for any $r_i \ge 2$, $1 \le i \le k$.

Note that applying some birational transformations to \mathcal{A} we get a divisor D whose support consists of curves of higher degree and Fenchel's problem is soluable under the same conditions. There is a version of Kato's theorem for conics, proved by Namba.

Theorem 1.2 (Namba [14]). Let C_1, C_2, \ldots, C_k be distinct irreducible conics in \mathbb{P}^2 . Suppose that for each C_i there is another C_j such that they are tangent at two distinct points (See Fig. 2). Then, for any integers $r_i \ge 2$, $1 \le i \le k$, there is a finite Galois covering $X \to \mathbb{P}^2$ branching at $D = \sum_{i=1}^k r_i C_i$.

There is very special conic-line arrangement which has been studied in depth, namely the *Apollonius configuration*, which is an arrangement of a smooth conic Qtogether with its k-distinct tangent lines T_i . This configuration is special since the fundamental group of this space is the second braid group of a k-times punctured

Fig. 2: Conics each has tacnodes

sphere. First result of uniformization problem branching along Apollonius configuration, stated in Theorem 1.3, is obtained by Namba [12]. Later, it has been studied in detail by Ueno [17] and Uludag [19], and more general result, stated in Theorem 1.4, was obtained.

Fig. 3: Apollonious configuration

Theorem 1.3 (Namba [12]). Let T_1 , T_2 and T_3 be 3 distinct lines on \mathbb{P}^2 circumscribing an irreducible conic Q. Then for any integers $r, s \geq 2$, there is a finite Galois covering $X \to \mathbb{P}^2$ branching at $D = r(\sum_{i=1}^3 T_i) + sQ$

Theorem 1.4 (Ueno [17], **Uludag** [19]). Let T_1, T_2, \ldots, T_k be k-distinct tangent lines of a smooth conic Q in \mathbb{P}^2 , and $r_i, s \ge 2$ be integers $(1 \le i \le k)$. Then, there is a finite Galois covering $X \to \mathbb{P}^2$ branching at $D = \sum_{i=1}^k r_i T_i + 2sQ$ if (r_1, \ldots, r_k, s) is one of the followings:

(i) k = 2 and $r_1 = r_2 \le \infty$ (ii) k = 3 and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} \le 1$ (iii) k = 3, s = 1 and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} > 1$ (iv) $k \ge 4$

To the authors' knowledge, the rest of the literature available on Fenchel's problem are [11], [12] and [13].

Finally, note that the real version of this problem is also interesting and wellstudied, i.e. in the theory of knots. On Finite Branched Uniformizations of the Projective Plane 5

2. A result on coverings branched along an irreducible curve.

The first fact to notice about Fenchel's problem is the following trivial proposition.

Proposition 2.1. Let D_1 , D_2 be two divisors in \mathbb{P}^2 without any common component. If there are finite Galois coverings $X_i \to \mathbb{P}^2$ branched at D_i for i = 1, 2, then there is a finite Galois covering $X \to \mathbb{P}^2$ branched at $D_1 + D_2$.

The covering $X \to \mathbb{P}^2$ can be constructed as the fibered product $X_1 \times_{\mathbb{P}^2} X_2$. Observe that Kato's theorem can not be derived from Theorem 2.1, since there are no coverings of \mathbb{P}^2 branched along a unique line L; obviously, $\mathbb{P}^2 \setminus L$ is simply connected.

In view of Proposition 2.1, it is natural to study Fenchel's problem for divisors D = rC with C being irreducible. Unfortunately, for such divisors we are still at the point where Zariski gave the complete solution for the three-cuspidal quartic curve [22]. The group $\pi_1(\mathbb{P}^2 \setminus C)$ for this curve is a non-abelian group of order 12, so that all the Galois coverings branched along it can be characterized. For curves with an infinite non-abelian group, we have the result below.

Theorem 2.1. Let $C \subset \mathbb{P}^2$ be an irreducible curve. If there is a surjection $\pi_1(\mathbb{P}^2 \setminus C) \twoheadrightarrow \mathbb{Z}/p\mathbb{Z} * \mathbb{Z}/q\mathbb{Z}$ for some $p \geq 2$, $q \geq 2$, then there is a finite Galois covering of \mathbb{P}^2 branched at rC for any $r \in \mathbb{N}$.

Observe that there are irreducible curves C with $\pi_1(\mathbb{P}^2 \setminus C) \simeq \mathbb{Z}/p\mathbb{Z} * \mathbb{Z}/q\mathbb{Z}$ by a result of Oka [15]. Examples of curves with non-trivial surjections as in the hypothesis of the theorem are given in [18].

Proof of Theorem 2.1 makes use of the following result of Namba. Let $D = \sum_{i=1}^{k} r_i C_i$ be a divisor, with meridians μ_i of C_i , and let $\rho : \pi_1^{orb}(\mathbb{P}^2, D) \hookrightarrow \operatorname{GL}_n(\mathbb{C})$ be a representation of $\pi_1^{orb}(\mathbb{P}^2, D)$. We say that ρ is essential if $|\rho(\mu_i)| = r_i$.

Lemma 2.1 (Namba [11]). If $\pi_1^{orb}(\mathbb{P}^2, D)$ has an essential representation ρ : $\pi_1^{orb}(\mathbb{P}^2, D) \hookrightarrow \operatorname{GL}_n(\mathbb{C})$, then $\pi_1^{orb}(\mathbb{P}^2, D)$ has a good image $\pi_1^{orb}(\mathbb{P}^2, D) \twoheadrightarrow K$. In other words, there is a finite Galois covering of \mathbb{P}^2 branched at D.

This lemma is a direct consequence of the following result:

Theorem 2.2 (Selberg [16]). Let R be a non-trivial, finitely generated subgroup of $\operatorname{GL}_n(\mathbb{C})$. Then there exists a torsion-free normal subgroup N of R of finite index.

Indeed, putting $R := \rho(\pi_1^{orb}(\mathbb{P}^2, D))$ and K := R/N yields Namba's lemma.

Definition 2.1. A generalized triangle group is a group given by the presentation

$$G_{p,q,r} := \langle a, b | a^p = b^q = w^r = 1 \rangle$$

where $2 \le p, q, r \le \infty$ and w is a cyclically reduced word involving both of a, b.

Remark 2.1. In the definition of qeneralized triangle group, we have omitted the case r = 1. But, the group $G_{p,q,1}$ is still non-trivial and intresting. One has $G_{2,2,1} \simeq$

 $\mathbb{Z}/2\mathbb{Z}$ regardless of w. The group $G_{2,3,1} = \langle a, b | a^2 = b^3 = w(a,b) = 1 \rangle$ is a one relator quotient of the modular group $\Gamma := \langle a, b | a^2 = b^3 = 1 \rangle$. Setting ab = x and $ab^{-1} = y$ one can obtain an alternative representation $\langle x, y | (yx^{-1}y)^2 = (x^{-1}y)^3 = 1 \rangle$ of Γ . Using this alternate relation Conder, Havas and Newman [3] checked the relator w of length up to 36, determined character of the group $G_{2,3,1}$ and got some very interesting results.

Theorem 2.3 (Baumslag, Morgan, Shalen [1]). The generalized triangle group $G_{p,q,r}$ has a representation $\rho : G \to \text{PSL}(2,\mathbb{C})$, such that the orders of $\rho(a)$, $\rho(b)$ and $\rho(w)$ are p, q, and r, respectively. Moreover, the group $G_{p,q,r}$

- (i) has a non-abelian free subgroup if $\kappa := \frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$.
- (ii) is infinite if $\kappa = 1$.
- (iii) is infinite if it has a special cyclic representation, or it has a special dihedral representation with at most one of p, q and r equal to 2. Infact the kernel of the given special representation (is of finite index) and maps to $\mathbb{Z} \times \mathbb{Z}$.

Proof. [Proof of Theorem 2.1] Let $C \subset \mathbb{P}^2$ be an irreducible curve of degree d, with a surjection $\phi : \pi_1(\mathbb{P}^2 \setminus C) \to \mathbb{Z}/p\mathbb{Z} * \mathbb{Z}/q\mathbb{Z}$, with $p, q \geq 2$. Observe that ϕ induce a surjection of the abelianized groups

$$\mathbb{Z}/d\mathbb{Z} \twoheadrightarrow \mathbb{Z}/p\mathbb{Z} * \mathbb{Z}/q\mathbb{Z}.$$

As the latter group should be cyclic, one has (p, q) = 1. Now let μ be a meridian of C, and put $w := \phi(\mu)$. Then there is a surjection

$$\pi_1^{orb}(\mathbb{P}^2, rC) \twoheadrightarrow (\mathbb{Z}/p\mathbb{Z} * \mathbb{Z}/q\mathbb{Z}) / \langle\!\langle w \rangle\!\rangle \simeq \langle a, b | a^p = b^q = w^r = 1 \rangle.$$

In the letter presentation, w cannot be conjugate to a nor to b. Indeed, if w were conjugate to, say, a, then setting a = 1 we would obtain a surjection

$$\pi_1(\mathbb{P}^2 \setminus C) / \langle\!\langle \mu \rangle\!\rangle \twoheadrightarrow \mathbb{Z}/q\mathbb{Z},$$

which contradict the fact that the conjugacy class of the meridian μ generate $\pi_1(\mathbb{P}^2 \setminus C)$. This implies that the word w, which can be assumed to be cyclically reduced, involves both of the letters a and b. This matches with the Definition 2.1. Hence, Theorem 2.1 follows then by an application of the Theorem 2.3 to the generalized triangle group $G_{p,q,r}$, and by Namba's lemma.

Remark 2.2. The following direct consequence of the Theorem 2.3 is noteworthy. If $C_{p,q}$ is an Oka curve (see [15]), with $\pi_1(\mathbb{P}^2 \setminus C_{p,q}) \simeq \mathbb{Z}/p\mathbb{Z} * \mathbb{Z}/q\mathbb{Z}$, then the group $\pi_1^{orb}(\mathbb{P}^2, rC_{p,q})$ contains a non-abelian free subgroup for any $r \geq 2$ provided that $p, q \geq 5$. On the other hand, for an irreducible curve C, the group $\pi_1^{orb}(\mathbb{P}^2, rC)$ may be trivial for infinitely many $r \in \mathbb{N}$, even if the group $\pi_1(\mathbb{P}^2 \setminus C)$ contains a non-abelian free subgroup. Such examples are discussed in [18], where the following question is raised: On Finite Branched Uniformizations of the Projective Plane 7

Question 2.1. Let $C \subset \mathbb{P}^2$ be an irreducible curve, such that the group $\pi_1(\mathbb{P}^2 \setminus C)$ is infinite. Is it true that there are infinitely many $r \in \mathbb{N}$ such that there exists a finite Galois covering of \mathbb{P} branched at rC?

In contrast with the Remark 2.2, it can be proved that the group $\pi_1^{orb}(\mathbb{P}^2, 2C)$ is finite under some rather restrictive hypothesis:

Proposition 2.2. If C is an irreducible curve such that the group $\pi_1(\mathbb{P}^2 \setminus C)$ is generated by only two meridians of C, then $\pi_1^{orb}(\mathbb{P}^2, 2C)$ is a finite group (it can be trivial).

Proof. Suppose that the meridians μ and ν generate $\pi_1(\mathbb{P}^2 \setminus C)$. Then, since any two meridians are conjugate elements of $\pi_1(\mathbb{P}^2 \setminus C)$, one has $\mu = x\nu x^{-1}$, where x is a word in μ and ν . This implies that $\pi_1^{orb}(\mathbb{P}^2, 2C)$ is a quotient of the group

$$K := \langle \mu, \nu \, | \, \mu^2 = \nu^2 = 1, \quad \mu = x \nu x^{-1} \rangle.$$

Since $\mu^2 = \nu^2 = 1$ in this latter group, the relation $\mu = x\nu x^{-1}$ can be written in the form $(\mu\nu)^n \mu(\mu\nu)^{-n} = \nu$ for some *n*. Hence,

$$K = \langle \mu, \nu \, | \, (\mu \nu)^{2n+1} = \mu^2 = \nu^2 = 1 \rangle,$$

that is, K is the dihedral group of order 4n + 2.

A direct application of the Zariski-Van Kampen theorem [22] shows that if an irreducible curve C of degree d has a flex F or a singular point p of order (d-2), then the group $G = \pi_1(\mathbb{P}^2 \setminus C)$ is generated by two meridians. Indeed, in the former case, considering projection with center $O \in F \setminus C$, one sees that d-2 of the generators of $\pi_1(\mathbb{P}^2 \setminus C)$ are equal, so that there remains 3 generators. One of these generators can be eliminated by the projective relation. In the latter case, putting the center of projection at the singular point p yields the result.

3. Fenchel's problem under equisingular deformations

Another basic fact concerning Fenchel's problem will be obtained as a corollary to the following theorem.

Theorem 3.1 (Zariski [22]). If the family of curves $\{C_t\}_{0 < |t| \le 1}$ is equisingular, and the limit curve C_0 is reduced, then there is a surjection

$$\phi: \pi_1(\mathbb{P}^2 \setminus C_0) \twoheadrightarrow \pi_1(\mathbb{P}^2 \setminus C_1).$$

The surjection ϕ is *natural* in the sense that ϕ sends meridians to meridians. Hence, under the hypothesis of Zariski's theorem, one has the induced surjections

$$\pi_1^{orb}(\mathbb{P}^2, rC_0) \twoheadrightarrow \pi_1^{orb}(\mathbb{P}^2, rC_1)$$

for any $r \in \mathbb{N}$. Assume that C_0, C_1 are irreducible. If we suppose that $\pi_1^{orb}(\mathbb{P}^2, rC_1)$ has a good image $\pi_1^{orb}(\mathbb{P}^2, rC_1) \twoheadrightarrow K$, we obtain the following corollary:

Corollary 3.1. Suppose that C_0 is an irreducible curve. Under the hypothesis of Zariski's theorem, if there is a finite Galois covering of \mathbb{P}^2 branched at rC_1 , then there is a finite Galois covering of \mathbb{P}^2 branched at rC_0 .

Remark 3.1. To conclude, let us give an example illustrating the utility of the group $\pi_1^{orb}(\mathbb{P}^2, D)$ as a projective invariant. In [4], Dimca gives an equisingular deformation of the Oka curve $C_{2,3}$ of degree d = 6 to a sextic with a unique singular point of multiplicity d-2 = 4. Let $p, q \in \mathbb{N}$ be two coprime numbers with $\frac{1}{p} + \frac{1}{q} + \frac{1}{2} \leq 1$. Then the Oka curve $C_{p,q}$ (of degree d = pq) cannot be equisingularly deformed to a reduced irreducible curve C' with a singular point of multiplicity d-2. Indeed, by Corollary 3.1, such a deformation would induce a surjection $\pi_1^{orb}(\mathbb{P}^2, 2C') \rightarrow \pi_1^{orb}(\mathbb{P}^2, 2C_{p,q})$. By Proposition 2.2, $\pi_1^{orb}(\mathbb{P}^2, 2C')$ is finite, whereas by the Theorem 2.3, $\pi_1^{orb}(\mathbb{P}^2, 2C_{p,q})$ is infinite, contradiction.

Acknowledgments

The first named author was supported by TÜBİTAK grant 110T690 and the Galatasaray University Research Fund project 09.504.001.

References

- G. Baumslag, J. Morgan and P. Shalen, Generalized triangle groups, Math. Proc. Camb. Phil. Soc. 102 (1987) 25–31.
- S. Bundgaard and J. Nielsen, On normal subgroups of finite index in F-groups, Math. Tidsskrift B (1951) 56–58.
- [3] M. Conder, G. Havas and M. F. Newman, Proc. Groups St Andrews 2009 in Bath, London Mathematical Society Lecture Note Series 387 (Cambridge University Press, 2011), pp 183–197.
- [4] A. Dimca, Singularities and the topology of hypersurface complements (Springer-Verlag, New-York, 1992).
- [5] R. Fox, On Fenchel's conjecture about F-groups, Math. Tidsskrift B, (1952) 61-65.
- [6] C. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371–415.
- [7] H. Grauert and R. Remmert, Komplexe Räume, Math. Ann. 136 (1958) 245–318.
- [8] H. M. Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of S³, Bull. Amer. Math. Soc. 80 (1974) 1243–1244.
- [9] M. Kato, On the existence of finite principal uniformizations of CP² along weighted line configurations, Mem. Fac. Sci., Kyushu Univ., Ser. A 38 (1984) 127–131.
- [10] J. M. Montesinos, A representation of closed orientable 3-manifolds as 3-fold branched coverings of S³, Bull. Amer. Math. Soc. 80 (1974) 845–846.
- [11] M. Namba, Representations of the third braid group and Fenchel's problem, Geom. Complex. Anal. ed. J. Nogichi (World Scientific, Singapore, 1996) pp 485–488.
- [12] M. Namba, Branched coverings and algebraic functions, Pitman Research Notes in Math. 161 (Longman Scientific & Technical, New York, 1987).
- [13] M. Namba, On finite Galois coveContrib. to Function Theoryings of projective manifolds, J. Math. Soc. Japan 41 (1989) 391–403.
- M. Namba, Finite branched coverings of complex manifolds, Sugaku expositions 5 No.2 (1992) 193–211.

July

12,

FILE

On Finite Branched Uniformizations of the Projective Plane 9

- [15] M. Oka, Some plane curves whose complement have non-abelian fundamental group, Math. Ann. 218 (1978) 55-65.
- [16] A. Selberg, On discontinuous groups in higher dimensional symmetric spaces, Internat. Colloq. Function Theory, Bombay, 1960 (Tata Inst., Bombay, 1960) pp 147-164.
- [17] R. Ueno, A generalization of the Fenchel-Bundgaard-Nielsen theorem, NUCB J. of Economics and Managment 44 No.2 (2000) 183-188.
- [18] A. M. Uludağ, Fundamental groups of a class of rational cuspidal curves, Ph.D. Thesis, Institut Fourier (2000).
- [19] A. M. Uludağ, Covering relations between ball-quotient orbifolds, Math. An. 308 No.3 (2004) 503-523.
- [20] A. M. Uludağ, Smooth finite abelian uniformizations of projective spaces and Calabi-Yau orbifolds, Manuscripta Math. 124 (2007) 31-44.
- [21] S. Wang and Y. Q. Wu, Any knot complement covers at most one knot complement, Pacific J. of Math. Vol. 158 (1993) 387-395.
- [22] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929) 305-328.