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34357, Ortaköy, İstanbul, Turkey

muludag@gsu.edu.tr

CELAL CEM SARIOĞLU
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We give a brief survey of the so-called Fenchel’s problem for the projective plane, that

is the problem of existence of finite Galois coverings of the complex projective plane

branched along a given divisor and prove the following result: Let p, q be two integers
greater than 1 and C be an irreducible plane curve. If there is a surjection of the fun-

damental group of the complement of C into a free product of cyclic groups of orders
p and q, then there is a finite Galois covering of the projective plane branched along C

with any given branching index.
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1. Introduction

Let M be a complex manifold, C1, C2, · · · , Ck ⊂ M be irreducible hypersurfaces,

and C := ∪ki=1Ci. A morphism X → M is said to be a Galois covering of M

branched at the divisor D :=
∑k
i=1 riCi if it is a Galois covering of M \ C in the

usual sense, and is branched along Ci with branching index ri ≥ 2 for 1 ≤ i ≤ k.

Given a divisor D on M , is there a finite Galois covering X → M branched

at D? This problem was proposed by Fenchel in the case where M is a Riemann

surface and is completely solved in this form: With two exceptions (“bad orbifolds”

of Thurston) (I) M = P1, D = rp and (II) M = P1, D = r1p1 + r2p2, r1 6= r2, there

always exists such a covering, see [2] and [5]. Here, we discuss the case M = P2.

Note that we are not concerned with the smoothness of the covering space X.

Almost all pairs (P2, D) that we consider in this paper does not admit finite smooth

uniformizations; this is why we avoid the orbifold terminology.

By the Grauert-Remmert theorem [7], any unbranched finite covering X ′ →
P2 \ C extends to a finite covering X → P2 branched along C, which is unique up
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to isomorphism. Hence, there is a one-to-one correspondance between the normal

subgroups of finite index in π1(P2 \ C) and the Galois coverings X → P2 branched

along C. The covering space X is a possibly singular algebraic surface.

Note that any finite branched cover is dominated by a finite branched Galois

cover, but this point of view seems not to be very helpful in this problem, where we

want to have a control on the branch curve and the ramification indices.

∗
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Fig. 1: Meridians of Ci

The map X → P2 being branched at D leads one to study the orbifold fun-

damental group πorb1 (P2, D) defined as follows: First take a small analytic disc ∆

intersecting Ci transversally at a smooth point of C, and define a meridian of Ci to

be the homotopy class in π1(P2 \C, ∗) of a loop obtained by joining ∗ to a point in

∂∆ along a path ω, turning once around ∂∆ in the positive sense, and going back

to ∗ along ω (See Fig. 1). It is well known that the group π1(P2 \ C) is generated

by the meridians of C (see e.g. [22]). Define orbifold fundamental group of (P2, D)

as

πorb1 (P2, D) := π1(P2 \ C)/〈〈µr11 , µ
r2
2 . . . , µrkk 〉〉.

Since any two meridians of an irreducible component of C are conjugate elements

in P2 \ C, the group πorb1 (P2, D) does not depend on the particular choice of the

meridians µi, so πorb1 (P2, D) is a projective invariant of the curve C. Moreover,

Fenchel’s problem has a simple formulation in terms of this invariant: Is there a

surjection φ : πorb1 (P2, D) � K onto a finite group K such that |φ(µi)| = ri? In

what follows, such a surjection will be called a good image of πorb1 (P2, D).

There is not much hope for a complete solution of the problem for a general

complex manifold M , due to two main difficulties, first being topological, the other

group theoretical: Firstly, it is not easy to determine the group π1(M \ C). The

Zariski-Van Kampen method provides an algorithm to compute this group for M =

P2, but does not give any further information on the gorup. Secondly, if M is a

Riemann surface, then π1(M \ C) is a free group unless C = ∅, whereas even for

M = P2, this group can be very complicated. The group πorb1 (P2, D) may even

be trivial, consider for example D = 2L1 + 3L2 + 5L3, where Li ⊂ P2 intersect

generically. The group π1(P2 \C) in this case is the abelian group generated by µ1

and µ2, with µ3 = µ1µ2, the elements µi being meridians of Li. Hence, the group
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πorb1 (P2, D) is the trivial group with the presentation

〈µ1, µ2, µ3 |µ2
1 = µ3

2 = µ5
3 = µ1µ2µ3 = [µ1, µ2] = [µ2, µ3] = [µ3, µ1] = 1〉

For arbitrary M , the group π1(M \ C) can also be trivial, e.g. take M to be a

simply connected surface and C to be a contractible curve. This is why we shall

consider Fenchel’s problem for the surface M = P2 only. Note that, in the algebraic

case, the problem in dimension ≥ 3 can be reduced to the problem in dimension 2

by Zariski’s hyperplane section theorem.

Many solutions to Fenchel’s problem can be obtained by considering abelian

coverings. For example, if C is a smooth curve of degree d and D = nC, then

π1(P2 \ C) ' Z/dZ and πorb1 (P2, D) ' Z/(d, n)Z, so that one can say that our

problem is solved for smooth curves. All abelian finite smooth uniformizations of

projective spaces of arbitray dimension have been effectively classified in [20]. At

the other extreme, one can consider C to be an arrangement of d lines, one has then

H1(P2 \ C) ' Zd−1. However, if one takes D = 2L1 + 3L2 + 5L3, where this time

both three of the lines Li pass through a common point, then as above there is no

abelian solution, whereas it is readily seen that

πorb1 (P2, D) ' 〈µ1, µ2, µ3 |µ2
1 = µ3

2 = µ5
3 = µ1µ2µ3 = 1〉 ' T2,3,5,

the latter group being the triangle group, which is finite of order 60. This suggests

to look for the non-abelian solutions to the problem. Note however that the corre-

sponding affine problem in C2 has always a positive solution, given by an abelian

covering.

Non-abelian solutions to Fenchel’s problem have been studied mainly by Kato [9]

and Namba [14]. The following result of Kato on line arrangements is well known:

Theorem 1.1 (Kato [9]). Let A = {L1, L2, . . . , Lk} be a line arrangement. If on

each Li lies at least one triple or higher point of ∪ki=1Li, then there is a finite Galois

covering of P2 branched at D =
∑k
i=1 riLi for any ri ≥ 2, 1 ≤ i ≤ k.

Note that applying some birational transformations to A we get a divisor D

whose support consists of curves of higher degree and Fenchel’s problem is soluable

under the same conditions. There is a version of Kato’s theorem for conics, proved

by Namba.

Theorem 1.2 (Namba [14]). Let C1, C2, . . . , Ck be distinct irreducible conics in

P2. Suppose that for each Ci there is another Cj such that they are tangent at two

distinct points (See Fig. 2). Then, for any integers ri ≥ 2, 1 ≤ i ≤ k, there is a

finite Galois covering X → P2 branching at D =
∑k
i=1 riCi.

There is very special conic-line arrangement which has been studied in depth,

namely the Apollonius configuration, which is an arrangement of a smooth conic Q

together with its k-distinct tangent lines Ti. This configuration is special since the

fundamental group of this space is the second braid group of a k-times punctured
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Fig. 2: Conics each has tacnodes

sphere. First result of uniformization problem branching along Apollonius configu-

ration, stated in Theorem 1.3, is obtained by Namba [12]. Later, it has been studied

in detail by Ueno [17] and Uludag [19], and more general result, stated in Theorem

1.4, was obtained.

Fig. 3: Apollonious configuration

Theorem 1.3 (Namba [12]). Let T1, T2 and T3 be 3 distinct lines on P2 cir-

cumscribing an irreducible conic Q. Then for any integers r, s ≥ 2, there is a finite

Galois covering X → P2 branching at D = r(
∑3
i=1 Ti) + sQ

Theorem 1.4 (Ueno [17], Uludag [19]). Let T1, T2, . . . , Tk be k-distinct tangent

lines of a smooth conic Q in P2, and ri, s ≥ 2 be integers (1 ≤ i ≤ k). Then, there is

a finite Galois covering X → P2 branching at D =
∑k
i=1 riTi+2sQ if (r1, . . . , rk, s)

is one of the followings:

(i) k = 2 and r1 = r2 ≤ ∞
(ii) k = 3 and 1

r1
+ 1

r2
+ 1

r3
≤ 1

(iii) k = 3, s = 1 and 1
r1

+ 1
r2

+ 1
r3
> 1

(iv) k ≥ 4

To the authors’ knowledge, the rest of the literature available on Fenchel’s prob-

lem are [11], [12] and [13].

Finally, note that the real version of this problem is also interesting and well-

studied, i.e. in the theory of knots.
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2. A result on coverings branched along an irreducible curve.

The first fact to notice about Fenchel’s problem is the following trivial proposition.

Proposition 2.1. Let D1, D2 be two divisors in P2 without any common compo-

nent. If there are finite Galois coverings Xi → P2 branched at Di for i = 1, 2, then

there is a finite Galois covering X → P2 branched at D1 +D2.

The covering X → P2 can be constructed as the fibered product X1 ×P2 X2.

Observe that Kato’s theorem can not be derived from Theorem 2.1, since there

are no coverings of P2 branched along a unique line L; obviously, P2 \ L is simply

connected.

In view of Proposition 2.1, it is natural to study Fenchel’s problem for divisors

D = rC with C being irreducible. Unfortunately, for such divisors we are still at

the point where Zariski gave the complete solution for the three-cuspidal quartic

curve [22]. The group π1(P2 \ C) for this curve is a non-abelian group of order 12,

so that all the Galois coverings branched along it can be characterized. For curves

with an infinite non-abelian group, we have the result below.

Theorem 2.1. Let C ⊂ P2 be an irreducible curve. If there is a surjection π1(P2 \
C) � Z/pZ ∗ Z/qZ for some p ≥ 2, q ≥ 2, then there is a finite Galois covering of

P2 branched at rC for any r ∈ N.

Observe that there are irreducible curves C with π1(P2 \ C) ' Z/pZ ∗ Z/qZ
by a result of Oka [15]. Examples of curves with non-trivial surjections as in the

hypothesis of the theorem are given in [18].

Proof of Theorem 2.1 makes use of the following result of Namba. Let D =∑k
i=1 riCi be a divisor, with meridians µi of Ci, and let ρ : πorb1 (P2, D) ↪→ GLn(C)

be a representation of πorb1 (P2, D). We say that ρ is essential if |ρ(µi)| = ri.

Lemma 2.1 (Namba [11]). If πorb1 (P2, D) has an essential representation ρ :

πorb1 (P2, D) ↪→ GLn(C), then πorb1 (P2, D) has a good image πorb1 (P2, D) � K. In

other words, there is a finite Galois covering of P2 branched at D.

This lemma is a direct consequence of the following result:

Theorem 2.2 (Selberg [16]). Let R be a non-trivial, finitely generated subgroup

of GLn(C). Then there exists a torsion-free normal subgroup N of R of finite index.

Indeed, putting R := ρ(πorb1 (P2, D)) and K := R/N yields Namba’s lemma.

Definition 2.1. A generalized triangle group is a group given by the presentation

Gp,q,r := 〈a, b| ap = bq = wr = 1〉,

where 2 ≤ p, q, r ≤ ∞ and w is a cyclically reduced word involving both of a, b.

Remark 2.1. In the definition of qeneralized triangle group, we have omitted the

case r = 1. But, the group Gp,q,1 is still non-trivial and intresting. One has G2,2,1 '
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Z/2Z regardless of w. The group G2,3,1 = 〈a, b | a2 = b3 = w(a, b) = 1〉 is a one

relator quotient of the modular group Γ := 〈a, b | a2 = b3 = 1〉. Setting ab = x and

ab−1 = y one can obtain an alternative representation 〈x, y | (yx−1y)2 = (x−1y)3 =

1〉 of Γ. Using this alternate relation Conder, Havas and Newman [3] checked the

relator w of length up to 36, determined character of the group G2,3,1 and got some

very interesting results.

Theorem 2.3 (Baumslag, Morgan, Shalen [1]). The generalized triangle group

Gp,q,r has a representation ρ : G → PSL(2,C), such that the orders of ρ(a), ρ(b)

and ρ(w) are p, q, and r, respectively. Moreover, the group Gp,q,r

(i) has a non-abelian free subgroup if κ := 1
p + 1

q + 1
r < 1.

(ii) is infinite if κ = 1.

(iii) is infinite if it has a special cyclic representation, or it has a special dihedral

representation with at most one of p, q and r equal to 2. Infact the kernel of

the given special representation (is of finite index) and maps to Z× Z.

Proof. [Proof of Theorem 2.1] Let C ⊂ P2 be an irreducible curve of degree d, with

a surjection φ : π1(P2 \ C)→ Z/pZ ∗ Z/qZ, with p, q ≥ 2. Observe that φ induce a

surjection of the abelianized groups

Z/dZ � Z/pZ ∗ Z/qZ.

As the latter group should be cyclic, one has (p, q) = 1. Now let µ be a meridian of

C, and put w := φ(µ). Then there is a surjection

πorb1 (P2, rC) � (Z/pZ ∗ Z/qZ) /〈〈w〉〉 ' 〈a, b| ap = bq = wr = 1〉.

In the letter presentation, w cannot be conjugate to a nor to b. Indeed, if w were

conjugate to, say, a, then setting a = 1 we would obtain a surjection

π1(P2 \ C)/〈〈µ〉〉 � Z/qZ,

which contradict the fact that the conjugacy class of the meridian µ generate π1(P2\
C). This implies that the word w, which can be assumed to be cyclically reduced,

involves both of the letters a and b. This matches with the Definition 2.1. Hence,

Theorem 2.1 follows then by an application of the Theorem 2.3 to the generalized

triangle group Gp,q,r, and by Namba’s lemma.

Remark 2.2. The following direct consequence of the Theorem 2.3 is noteworthy.

If Cp,q is an Oka curve (see [15]), with π1(P2 \Cp,q) ' Z/pZ ∗Z/qZ, then the group

πorb1 (P2, rCp,q) contains a non-abelian free subgroup for any r ≥ 2 provided that

p, q ≥ 5. On the other hand, for an irreducible curve C, the group πorb1 (P2, rC)

may be trivial for infinitely many r ∈ N, even if the group π1(P2 \ C) contains a

non-abelian free subgroup. Such examples are discussed in [18], where the following

question is raised:
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Question 2.1. Let C ⊂ P2 be an irreducible curve, such that the group π1(P2 \C)

is infinite. Is it true that there are infinitely many r ∈ N such that there exists a

finite Galois covering of P branched at rC?

In contrast with the Remark 2.2, it can be proved that the group πorb1 (P2, 2C)

is finite under some rather restrictive hypothesis:

Proposition 2.2. If C is an irreducible curve such that the group π1(P2 \ C) is

generated by only two meridians of C, then πorb1 (P2, 2C) is a finite group (it can be

trivial).

Proof. Suppose that the meridians µ and ν generate π1(P2 \ C). Then, since any

two meridians are conjugate elements of π1(P2 \C), one has µ = xνx−1, where x is

a word in µ and ν. This implies that πorb1 (P2, 2C) is a quotient of the group

K := 〈µ, ν |µ2 = ν2 = 1, µ = xνx−1〉.

Since µ2 = ν2 = 1 in this latter group, the relation µ = xνx−1 can be written in

the form (µν)nµ(µν)−n = ν for some n. Hence,

K = 〈µ, ν | (µν)2n+1 = µ2 = ν2 = 1〉,

that is, K is the dihedral group of order 4n+ 2.

A direct application of the Zariski-Van Kampen theorem [22] shows that if an

irreducible curve C of degree d has a flex F or a singular point p of order (d − 2),

then the group G = π1(P2 \C) is generated by two meridians. Indeed, in the former

case, considering projection with center O ∈ F \ C, one sees that d − 2 of the

generators of π1(P2 \C) are equal, so that there remains 3 generators. One of these

generators can be eliminated by the projective relation. In the latter case, putting

the center of projection at the singular point p yields the result.

3. Fenchel’s problem under equisingular deformations

Another basic fact concerning Fenchel’s problem will be obtained as a corollary to

the following theorem.

Theorem 3.1 (Zariski [22]). If the family of curves {Ct}0<|t|≤1 is equisingular,

and the limit curve C0 is reduced, then there is a surjection

φ : π1(P2 \ C0) � π1(P2 \ C1).

The surjection φ is natural in the sense that φ sends meridians to meridians.

Hence, under the hypothesis of Zariski’s theorem, one has the induced surjections

πorb1 (P2, rC0) � πorb1 (P2, rC1)

for any r ∈ N. Assume that C0, C1 are irreducible. If we suppose that πorb1 (P2, rC1)

has a good image πorb1 (P2, rC1) � K, we obtain the following corollary:
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Corollary 3.1. Suppose that C0 is an irreducible curve. Under the hypothesis of

Zariski’s theorem, if there is a finite Galois covering of P2 branched at rC1, then

there is a finite Galois covering of P2 branched at rC0.

Remark 3.1. To conclude, let us give an example illustrating the utility of the

group πorb1 (P2, D) as a projective invariant. In [4], Dimca gives an equisingular

deformation of the Oka curve C2,3 of degree d = 6 to a sextic with a unique singular

point of multiplicity d−2 = 4. Let p, q ∈ N be two coprime numbers with 1
p+ 1

q + 1
2 ≤

1. Then the Oka curve Cp,q (of degree d = pq) cannot be equisingularly deformed

to a reduced irreducible curve C ′ with a singular point of multiplicity d− 2. Indeed,

by Corollary 3.1, such a deformation would induce a surjection πorb1 (P2, 2C ′) �
πorb1 (P2, 2Cp,q). By Proposition 2.2, πorb1 (P2, 2C ′) is finite, whereas by the Theorem

2.3, πorb1 (P2, 2Cp,q) is infinite, contradiction.
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