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Quadrangulations of sphere, ball quotients and Belyi maps

A. Muhammed Uludağ · Ayberk Zeytin

Abstract We give a classification of sphere quadrangulations satisfying a condition
of non-negative curvature, following Thurston’s classification of sphere triangula-
tions under the same condition. The generic family of quadrangulations is parametrized
by the points of positive square-norm of an integral Gaussian lattice Λ ′ in the six-
dimensional complex Lorentz space. There is a subgroup of automorphisms of Λ ′

acting on this lattice whose orbits parametrize sphere quadrangulations in a one-to-
one manner. This group acts discretely on the corresponding five-dimensional com-
plex hyperbolic space; is of finite co-volume; its ball quotient is the moduli space of
8 points on the Riemann sphere, and also appears in Picard-Terada-Deligne-Mostow
list.

Keywords sphere quadrangulation · ramified coverings of sphere · ball quotients

1 Introduction

Let X be a closed orientable 2-manifold. A triangulation of X is a maximal polygonal
decomposition of X . A vertex of a triangulation is non-negatively curved if there are
at most six triangles meeting at this vertex. If all vertices of a triangulation are non-
negatively curved, then the triangulation itself is said to be non-negatively curved.
Let T be a triangulation of X and let ki be the number of vertices of T adjacent to i
triangles. A basic counting argument yields the formula

6χ(X) =
∞

∑
i=1

(6− i)ki (1)

Observe that the coefficient of k6 is zero in the above formula, so that vertices with
exactly six adjacent triangles have no effect on χ(X).
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Assume now that T is of non-negative curvature. This means that ki = 0 unless
i≤ 6 in the above formula, which gives χ(X)≥ 0. According to Equation 1, X must
be a torus if ki = 0 for i 6= 6. In case there is a vertex of positive curvature; that is if
at least one among k1,k2,k3,k4 and k5 is non-zero, then the formula yields χ(X)> 0.
Therefore X must be the sphere with χ(X) = 2 and the formula becomes

12 =
5

∑
i=1

(6− i)ki = 5k1 +4k2 +3k3 +2k4 + k5 (2)

One can easily write down a complete list of tuples τ = (k1,k2,k3,k4,k5) satisfying
this equation, which are finite in number. In [22] Thurston indicates that each solu-
tion tuple τ is in fact realized by a family of sphere triangulations, each family being
parametrized by the points of positive square-norm in an Eisenstein lattice Λ(τ) in
the complex Lorentz space C1,k−3 with k = k1 + k2 + k3 + k4 + k5 > 3. For each so-
lution tuple, there is a group of automorphisms, Γ (τ), acting on the lattice Λ(τ),
whose orbits parametrize non-negatively curved triangulations in a one-to-one man-
ner. This group acts discretely on the related k− 3-dimensional complex hyperbolic
space CHk−3; is of finite co-volume; and also appears in Picard-Terada-Deligne-
Mostow list. The quotient space, M (τ), is thus a complex ball-quotient of dimen-
sion k−3. Thurston proves these claims in detail for the solution tuple (0,0,0,0,12)
which yields the top dimensional (generic) case. The related ball-quotient has the
moduli space of 12 points on the Riemann sphere as its underlying complex mani-
fold. The lattice Λ(0,0,0,0,12) will be denoted by Λ in the sequel. (see Theorem 4
for a restatement of Thurston’s result).

In the paper cited above, Thurston constructs a more populous list of discrete
groups acting on complex hyperbolic spaces, then those that classify triangulations.
Although this list contains the list obtained in the paper by Deligne and Mostow on
hypergeometric functions in several variables, the two papers are technically disjoint
and our first task in the current work is to provide a link, by showing that Thurston’s
space of cocyles is isomorphic to the cohomology group of an associated locally
constant sheaf on the sphere in Deligne-Mostow’s paper (Theorem 3).

Our second aim in this paper is to carry out an analogous classification for sphere
quadrangulations (Theorem 5). A vertex of a quadrangulation is non-negatively
curved if there are at most four quadrangles meeting at this vertex. If all vertices
of a quadrangulation are non-negatively curved, then the quadrangulation itself is
said to be non-negatively curved. Let Q be a quadrangulation of X and let ki be the
number of vertices of Q adjacent to i quadrangles. A basic counting argument yields
the formula

4χ(X) =
∞

∑
i=1

(4− i)ki (3)

Observe that the coefficient of k4 is zero in the above formula, so that vertices with
exactly four adjacent quadrangulation have no effect on χ(X).

Assume now that Q is of non-negative curvature. This means that ki = 0 unless
i≤ 4 in Equation 3, which gives χ(X)≥ 0. So X must be a torus if ki = 0 for i 6= 4. In
case there is a vertex of positive curvature; that is if at least one among k1,k2 and k3
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Fig. 1 The cube as a quadrangulation of S2.

is non-zero, then the formula yields χ(X) > 0. Therefore X must be the sphere with
χ(X) = 2 and the formula becomes

8 =
3

∑
i=1

(4− i)ki = 3k1 +2k2 + k3 (4)

One can easily write down a complete list of tuples τ ′ = (k1,k2,k3) satisfying this
equation, which are finite in number. Our aim is to show that each solution tuple
τ ′ is in fact realized by a family of sphere quadrangulations, each family being
parametrized by the points of positive square-norm in a Gaußian lattice Λ ′(τ ′) in
the complex Lorentz space C1,k−3 with k = k1 +k2 +k3 > 3. For each solution tuple,
there is a group of automorphisms, Γ ′(τ ′), acting on the lattice Λ ′(τ ′), whose orbits
parametrize quadrangulations in a one-to-one manner. This group acts discretely on
the related complex hyperbolic space CHk−3; is of finite co-volume; and also ap-
pears in Picard-Terada-Deligne-Mostow-Thurston list. The quotient space, M ′(τ ′),
is thus a complex ball-quotient of dimension k−3. In the current paper we prove these
claims for the solution tuple (0,0,8) which yields the top dimensional (generic) case.
The related ball-quotient has the moduli space of 8 points on the Riemann sphere as
its underlying complex manifold. The lattice Λ ′(0,0,8) will be denoted by Λ ′ in the
sequel. We intend to prove the remaining cases in a forthcoming paper, along with
the above-mentioned claims on triangulations which are not included in Thurston’s
paper.

In the final part of the paper, we observe that a triangulation (or a quadrangula-
tion) is nothing but a three-point branched covering of the sphere. This covering is
determined by the embedded graph (dessin) dual to the triangulation. In this vein we
may view the combinatorial Gauss-Bonnet formulas (1) and (3) as instances of the
Riemann-Hurwitz formula, wherein X → P1 is ramified over 0 with constant rami-
fication index 2, over 1 with constant ramification index 3 (4 for quadrangulations)
and over ∞ with ramification index i precisely at ki points. Thereby the lattices clas-
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sifying triangulations (or quadrangulations) of non-negative curvature parametrize
also a family of three-point branched coverings of the sphere. Equivalently, they
parametrize a family of subgroups up to conjugacy of the modular group (subgroups
of the 2-4-∞ triangle group in the case of quadrangulations). Even though they are
seldom congruence subgroups, there are reasons to believe that they are special and
amenable to study. The second author, [27], have succeeded in determining the Belyı̆
maps of a very special subfamily of triangulations, here we determine, in terms of
Weierstrass’ elliptic functions, the Belyı̆ maps of an analogous family of quadran-
gulations. It seems promising to study the Galois action on this family of lattice-
parametrized dessins.

We also discuss connections with Teichmüller discs along with some related arith-
meticity questions and conjectures towards the end of the paper. Finally, we would
like to remark that these ideas not only may pave us the road in understanding cer-
tain conjectures concerning the monster, [1], but also provides us a way to construct
certain lattices in a combinatorial way, and study them likewise, [2].

2 From Cone Manifolds to Triangulations

We begin with recalling fundamental facts to be used in what follows. The terminol-
ogy is borrowed from [23]. Equip the set

Vθ := {(r, t) |r ∈ R≥0, t ∈ R/θZ}.

with the metric ds2
θ
= dr2 + r2dt2.

Definition 1 For X an orientable topological surface and S a finite set of points on
X , we will say a metric, c, on X is a Euclidean cone metric, whenever every element
x ∈ X − S has an open neighbourhood, Ux, isometric to E2 := (C,ds2 = |dz|2), and
every element p ∈ S has a neighbourhood, Up such that there is an isometry, ϕp,
between Up and Vθ with ϕp(p) = (0,0).

We will write cone metric for short instead of Euclidean cone metric. Elements of
the set S = Sc will be called singular points and the elements of X−Sc will be called
regular points. We will call the pair (X ,c) a Euclidean cone manifold of dimension 2,
or a cone surface, in short. The real number β = θ

2π
−1 is referred to as the residue.

Notice that, when θ = 2π our local model is nothing but C with its flat metric. We
will call κ = 2π−θ the concentrated curvature at (0,0).

Let (X ,c) be a cone surface. Regardless of a point p on X being regular or singular
around p one always has a local analytic chart around p, i.e a cone metric induces a
complex structure on the surface X . In fact, any given Riemannian metric on Xg,N in-
duces a conformal structure, and the conformal structure induced by the metric is the
same as the conformal structure induced by its arbitrary positive function multiples.

Let us recall:

Theorem 1 (Singular Gauß-Bonnet, [23, Proposition 3]) Let X be a cone surface
where the points p1, . . . , pN ∈X are singular with concentrated curvatures κ1, . . . ,κN ,
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respectively. Then:
N

∑
i=1

κi = 2πχ(X);

where χ(X) is the topological Euler characteristic of X.

And, in fact, this is the only restriction, known as the Gauss - Bonnet restriction.
In other words, we have the following:

Theorem 2 ([23, §5, Théorème]) Let X be as above, p1, · · · , pN are points in X and
κ1, . . . ,κN are rational numbers such that

N

∑
i=1

κi = 2πχ(X)

Then, X admits a cone metric, c, with concentrated curvature κi = 2π − θi, at the
point pi, i = 1, . . . ,N. Moreover, this metric is unique up to normalization.

Definition 2 A polygonal decomposition P of a surface X is a finite set of subsets
of X , Ui together with homeomorphisms, fi : Ui −→ Pi, where Pi is a polygon in R2

such that:

i.
⋃

i Ui = X , and
ii. whenever Ui ∩U j 6= /0, for i 6= j, then the intersection is a subset of the union of

set of edges, e(P), of P and the set of vertices, v(P) of P;

where we define the set of vertices, edges of P , to be the set of inverse images under
fi of all vertices, edges, of the polygons Pi. We define the set of faces, f (P), to be
the set {Ui}.

In particular, a triangulation is a polygonal decomposition in which every face is a
triangle. Now let (X ,c) be a cone surface. If, a polygonal decomposition of X satisfies
the following two properties, then it is called a Euclidean polygonal decomposition
of (X ,c):

iii. Pis are subspaces of E2 with fis being isometries and
iv. for every pair of distinct faces Ui∩U j which intersect in an edge, e ∈ e(P), there

exists an element, γi, j in the group of isometries of the Euclidean plane, Isom(E2),
such that γi j

(
fi(e)

)
= f j(e).

Let T be a finite metric triangulation of X = S2. Let p ∈ v(T ) be a vertex at
which the faces T1 =Ui1 , . . . ,Tn =Uin meet. The curvature concentrated at p is defined
as:

2π−
n

∑
k=1

αk;

where αk is the angle at the point p inside the triangle fik(Ti), for i ∈ {1, . . . ,n} see
Figure 2. Then, Theorem 2 provides us a cone metric, say cT , associated to T .

Conversely, let c be a euclidean cone metric. Fix any singular point p1 ∈ Sc, and
order the elements of Sc with respect to their distance to p1. By re-indexing if neces-
sary, we may assume that the distance of p1 to pi is less than or equal to p j if and only
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p
Tn

T1

T2

αn

α1
α2

Fig. 2 Property iv. allows us to glue euclidean triangles.

q3

q1

q2

p2

p3 e2,3

p1

α3

α3

fT

Fig. 3 A euclidean triangle in (S2,c) determines a euclidean triangle in E2

if i≤ j. Let T be the geodesic triangle with vertices at p1, p2, p3; ei, j be the geodesic
between pi and p j; α j denote the angle between ei, j and e j,k; where i, j ∈ {1,2,3}.

Observe that edges, ei, j must have empty intersection with the set Sc\{p1, p2, p3}.
The triangle T determines, in E2, a geodesic triangle with the property that the angle
at qi = fT (pi) is exactly αi, and the length of the edge fi, j = fT (ei, j) is equal to that
of ei, j; where fT : T −→ E2 is the induced isometry in between, see Figure 3.

More generally, fix an element p1 ∈ Sc and enumerate the remaining singular
points so that there is a continuous path, γ : [0,1] −→ S2, joining p1 to pN with the
following properties:

– there is a sequence of numbers t1 = 0 < t2 < .. . < 1 = tN satisfying γ(ti) = pi,
i = 1,2, . . . ,N,

– γ|[ti,ti+1] is a geodesic with respect to c, for i = 1, . . . ,N−1,
– γ is one-to-one.

Proposition 1 ([19, Theorem 10.1], [22, Proposition 3.1] ) Let c be a cone metric
on S2. Then c induces a geodesic metric triangulation denoted by Tc, on S2 with the
property that the set of vertices of Tc is exactly the set of singular points, Sc, of c.
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Proof Cut the sphere open along γ . where γ is as above. Since all the singular points
of c are along γ([0,1]), one can write a map, ψ , from S2 to a polygon, P in E2 so that
ψ is an isometry when restricted to S2 \γ . Moreover, ψ maps any geodesic γ|[ti,ti+1] to
an edge of P, for all i= 1, . . . ,n−1, and in fact twice. Notice also that the polygon P is
uniquely determined, up to Isom(E2). In order to obtain a euclidean triangulation on
S2, it is enough to draw the necessary diagonals of P. As every diagonal is a geodesic
in E2, we obtain a metric triangulation.

P

p4

p5

p2

p1

p3

ψ q1

q2

q3

q4

q5

q4

q3
q2

Fig. 4 From a cone metric to a geodesic triangulation

One has to note however that geodesic metric triangulation associated to a cone
metric is not unique, even if scertain normalizations are chosen in the very begin-
ning. Nevertheless, there are finitely many such choices, up to orientation preserving
similarity. One might call triangulations arising from Proposition 1 minimal.

2.1 Universal Branched Cover of a Cone Surface

Before we proceed, we to introduce some notation: for the curvature parameters κ =
(κ1, . . . ,κN) by C(κ) = C(κ1,κ2, . . . ,κN), we will denote the set of all cone metrics
which has N singular points with concentrated curvatures κi 6= 0, i = 1,2, . . . ,N; N ≥
3, up to orientation preserving similarity. Let c ∈ C(κ) be a cone metric, with an
induced triangulation Tc on S2, see Proposition 1.

Definition 3 Let γ : [0,1] −→ S2 be a piecewise smooth path in S2, such that
γ
(
(0,1)

)
⊂ S2 \ Sc. We will say that γ is admissible if γ([0,1]) intersects the edges,

e(Tc), of Tc finitely many times. We will call a homotopy γt(s), t,s ∈ [0,1], of piece-
wise smooth paths γ,γ ′ with γ0 = γ , and γ1 = γ ′ admissible if γt is an admissible path
for every t ∈ [0,1].

As in the classical case of fundamental groups, we define two admissible curves
to be homotopic if and only if there is an admissible homotopy from one to another.
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If one fixes a base point in S2 \ Sc, the set of homotopy classes of admissible paths
form a group, which is isomorphic to the fundamental group of S2 \Sc, as a result of
the following lemma:

Lemma 1 Let γ : [0,1] −→ S2 be a continuous, piecewise differentiable path, with
γ(0,1) ⊂ S2 \ Sc. Assume further that γ is not admissible, i.e. there is an edge e ∈
e(Tc) which intersects γ infinitely many times. Then the homotopy class, [γ], of γ

contains an admissible path.

Proof Suppose that γ intersects eo ∈ e(Tc) infinitely many times. We exclude the
case when γ , or a part of γ follows a portion of e, as in that case we may perturb γ

so that it intersects e in only two points. There is, then, an increasing sequence, rn, of
elements of (0,1), not necessarily non-constant, with the property that eo∩ γ(0,1) =
{γ(rn) |n ∈ N}. One can find a sufficiently large M ∈ N such that for every n > M
the restriction of the path γ to the closed interval [rn,rn+1] is homotopic to the path
that follows e with initial point γ(rn) ∈ e and terminal point γ(rn+1) ∈ e. So, γ is
homotopic to the path that follows e from γrM to γr∞

; where γ∞ denotes the limit of
the sequence (γ(rk))k∈N. As noted above, this last path is homotopic to a path which
intersects e in only two points.

Corollary 1 The group of homotopy classes of admissible paths is independent of
the chosen triangulation.

Now, regard Tc as a simplicial complex on S2 and fix a base point pI ∈ S2 \
(
Sc∪

e(Tc)
)
. By T̂c denote the set of all pairs (σ , [γ]); where σ is a 0,1 or 2-simplex of

Tc, and [γ] is the admissible homotopy class of an admissible curve γ : [0,1]−→ P1

which connects pI to a point, call pF , in σ . Note that T̂c is by definition a simplicial
complex. Let X̂ denote the geometric realization of T̂c. Note that X̂ comes together
with a projection map:

π̂ : X̂ S2

(σ , [γ]) pF = γ(1)

Let us denote the set S2 \ Sc by Pc. We also assume that κi ∈ πQ∩ (0,2π) and
N ≥ 3. As is well-known there is a torsion-free subgroup Γc ≤ PSL2(R) with cusps.
By adding the set of cusps of Γc to the upper half plane H, see [21, Chapter 1], we
obtain a map π̃ : H[ := H∪{cusps of Γc} −→ P1. Pull back the triangulation Tc by
π̃ , to obtain a triangulation on H[, denoted by T̃c. Then we have:

Proposition 2 The geometric realization X̂ of T̂c is nothing but H[.

Proof Call the triangle, in Tc which contains pI , the base triangle and denote it by
TI . Choose a point, p̃I , in the set π−1(pI). Consider the map from T̂c to T̃c described
as follows: take an element (σ , [γ]) ∈ X̂ , let pF ∈ σ denote the endpoint of γ . We
may lift the path γ to a path in H⊂H[ in a unique way as we chose already an initial



Quadrangulations of sphere, ball quotients and Belyi maps 9

(H[,T̃c) (X̂ ,T̂c)

(P1,Tc)

π̃ π̂

point, p̃I . Therefore the final point p̃F is already determined, which we define to be
the image of the pair (σ , [γ]).

For the inverse map, take any point x̃ in H[, and any piecewise smooth path, γp̃I ,x̃

from p̃I to x̃ so that it has empty intersection with v(T̃c) for every t ∈ (0,1). Then
the path γpI ,x = π(γp̃I ,x̃) is a path in Pc, which does not pass through the vertices of
Tc except possibly at endpoints. Then there is a 0, 1 or 2-simplex, σ , of Tc to which
x = π(x̃) belongs. Map this element to the pair (σ ,γpI ,x). The map is easily seen to
be well-defined.

Definition 4 The pair (H[,T̃c), together with the locally flat metric obtained by lift-
ing c is called the universal branched cover of (P1,Tc).

2.2 Two Representations

In this section, our aim is to compare two well-known representations of the funda-
mental group of S2\Sc for a cone metric c with curvature parameters κ =(κ1, . . . ,κN).
More precisely, we will show that the holonomy representation factors through the
monodromy representation.

Definition 5 We will call the image of hol (π1(Pc, pI)) in O(2), the orthogonal group,
under the natural projection the orthogonal part of the holonomy representation and
denote by ho the composition, ho : π1(Pc, pI)−→ O(2).

Take a vertex p ∈ v(Tc), i.e. a singular point p ∈ Sc. Let Up be an open neigh-
bourhood of p so that Up contains no other singular point of c. Suppose that there are
l triangles having p as a vertex with angles at p being α1, . . . ,αl , see Figure 5. If by
θp we denote the cone angle at p, then we have

θp =
l

∑
i=1

αi.

Recall that the generating set for the fundamental group π1(Pc, pI) may be chosen
as positively oriented simple closed curves that rotates once around every element
of Sc. Let γp denote the positively oriented simple closed curve which rotates once
around p. Without loss of generality we may assume that pI ∈Up. It follows that, γp
is a generator of the local fundamental group π1(Up, pI)∼= Z. Then, the pair (T1, id)
is send to (T1,γp) ∈ H[. And hence, the element induced by γp, h[γp] is then nothing
but rotation by an angle of θp, rθp .

So, we proved:

Proposition 3 The image of ho : π1(Pc, pI) −→ O(2) is generated by rotations of
angle θp, for p ∈ Sc.
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p
T1

T2

Tl

Up ⊆ P1
c

Tl−1

α1

α2

αl−1
αl

Fig. 5 Neighborhood of p

Now we are ready to prove the result:

Proposition 4 The orthogonal part of the holonomy representation and the mon-
odromy representation associated to c are isomorphic.

Proof Consider f : h0(π1(Pc, pI))−→GL1(C)∼=C× defined as f (rθp) = eθp
√
−1, for

every p ∈ Sc. As generators are mapped to generators taking into account the orders,
f is an isomorphism.

2.3 Combinatorics and Cohomology

In this section, we will begin with introducing a vector space, which is closely re-
lated to the space of cone metrics. This vector space is closely related to a certain
cohomology of a locally constant sheaf. Throughout we fix the curvature parameters
κ = (κ1, . . . ,κN) ∈ π ·QN , which are, assumed to be elements of the open interval
(0,2π) with N ≥ 3, and satisfy the Gauss-Bonnet condition, see Theorem 1.

2.3.1 Cone Metrics as Cocycles

For c ∈ C(κ) the developing map, denoted by ϕ̃ , may be utilized to associate two
complex numbers to each edge, namely the difference between the endpoints. De-
note this association by Zc : e(Tc)×Z/2Z−→ C, where the group Z/2Z is used for
keeping track of the orientation. Observe the following two properties of Zc:

i. Zc(e,+)+Zc(e,−) = 0, for every edge e of Tc
ii. if (e1,+),(e2,+),(e3,+) denote the oriented boundary of some triangle in Tc,

then ∑i Zc(ei,+) = 0.

These properties encourage us to call Zc a cocycle. Depending on κ , such cocycles
form a C vector space, say Hκ . Define the following hermitian form on Hκ :
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A(c) :=
1
4 ∑

triangles ∈Tc

Zc(e1)Zc(e2)−Zc(e1)Zc(e2); (5)

where eis denote the positively oriented edges of each triangle. Note that the form
A defined above is nothing but a measure of the area of a given cone metric on the
sphere. We also have:

Proposition 5 ([22, Propositions 3.2, 3.3]) The hermitian form A on the vector
space H has signature (1,N − 3), where N is the number of singular points of c.
In particular, the complex dimension of the vector space of cocycles is N−2.

Before the proof, we would like to make:

Definition 6 For a cone metric c ∈C(κ), a subset F ⊆ E2 will be called a euclidean
(or flat) fundamental region, whenever the followings hold:

– F is connected,
– the developing map ϕ̃c has a well defined inverse when restricted to F ,
– ϕ̃c(P1

c) = F .

Proof [Proposition 5].
H ∼= H1(Xc,C)χ (6)

where χ denotes the tautological character of the Galois group of the abelian cover
of Pc ramified only over the singular points with compatible orders, see [15, §4] for
details. In that case [5] tells us that it is of signature (1,N−3).

q

p

q

C e

e

p+q

Fig. 6 Obtaining (P1,c′) from (P1,c).

The projectivization of the set of elements in Hκ which are of positive norm with
respect to a hermitian form of signature (1,N−3) form a complex ball of dimension
N−3, which can be regarded as a model for the complex hyperbolic space, CHN−3,
together with a negatively curved hermitian metric induced by the form A.
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2.3.2 Cohomology and Hκ

Recall that on the Riemann surface Pc there exists a locally constant sheaf of rank
one, say Fκ = Fκ1,...,κN , whose monodromy around the vertex pi ∈ Sc is rotation by
θi, see [6] for details. In this setting the vector space Hκ has also the following nice
interpretation proof of which relies on the facts coming after it:

Theorem 3 The vector space Hκ of cocycles and H1(Pc,Fκ1,...,κN ) are isomorphic.

For c ∈C(κ), by Xc let us denote the normalization of the plane algebraic curve
given by affine equation:

yη =
N−1

∏
i=1

(x− pi)
δi ; (7)

where δis are chosen so as to satisfy κi
2π

= δi
η

with the property that the greatest
common divisor of δ1, . . .δN and η is 1. The projection map (x,y) 7→ x from Xc to
P1 is then ramified precisely over the singular set Sc. Let Gal(prx) denote the Galois
group of the covering Xc −→ P1 and let χ : Gal(prx)−→ C× denote the tautological
character. In this setup χ acts on ΩXc and we have

H1(Xc,C)χ ∼= H1(Pc,Fκ1,...,κN ); (8)

where H1(Xc,C)χ is the set of classes of 1-forms on Xc which are invariant under χ .

Lemma 2 ([7, Proposition 2.3.1]) dimC(H1(Pc,Fκ1,...,κN )) = N−2.

On the other hand, χ acts on ΩXc and we have a canonical identification

ΩXc
χ ∼= Ω

χ

Xc
= Ω

χη−1

Xc

via complex conjugation. To compute the dimension of Ω
χη−1

Xc
it is enough to note

that only 1-forms of type f (x) dx
y can be an eigenform; where f (x) ∈ C[x] of degree

less than N−2.

Lemma 3 dimC Ω
χη−1

Xc
= N−3.

Proof We will prove our claim only for the case where δi = 1 for each i= 1, . . .N−1.
The general case follows the same line of arguments, only somewhat more compli-
cated. To prove, let us show that the set B := { dx

y ,x
dx
y , . . . ,n

N−2 dx
y } is a basis. C-

linear independence of B is clear. Let (x)0 = D, (x)∞ = D′ = ∑
η

j=1 q j denote the zero
and pole divisor of x, respectively. At any ramification point pi of the projection prx,
the function x− pi is locally of order η , hence dx is of order η − 1. On the other
hand at each pole, q j, of x, the function x− q j is locally of the form 1

z j
eh; where h

is a holomorphic function. Thus (dx)∞ = 2D′. The zero divisor of the function y is
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nothing but the ramification divisor of prx, i.e. (y)0 = R = ∑
N−1
i=1 pi. As degy = N−1

we must have (y)∞ = N−1
η

D′. So:(
xk dx

yη−1

)
= kD− kD′+(η−1)R−2D′− (η−1)(R− N−1

η
D′)

= kD−
(
(η−1)

N−1
η
− k−2

)
D′.

So, we must have k ≥ 0 and k < N−3. Hence the claim follows.

Theorem 3 can be considered not only as an explanation of the comment “This
turns out to be closely related to work of Picard and Mostow and Deligne.” made in
[22], but also as a combinatorial description of some cohomology groups.

3 Quadrangulations of the Sphere as a Lattice

In this section, our aim is to obtain a classification of a family of quadrangulations
of the sphere satisfying certain curvature conditions. That is: we will obtain a lattice
in a specific space of cone metrics whose points parametrize quadrangulation s of
non-negative curvature. The result we obtain is an analogue of [22, Theorem 0.1]. As
before, we assume that our curvature parameters κ1, . . . ,κN are rational multiples of
π lying in the open interval (0,2π). The result of Thurston and ours may be regarded
as classification of certain subgroups of the modular group, Z/2Z∗Z/3Z and of the
group Z/2Z∗Z/4Z, respectively.

3.1 Quadrangulations...

As a particular case of Definition 2 let us choose each Pi as a quadrangle to obtain a
quadrangulation. We fix X to be the 2-sphere. Just as in the case of a metric triangu-
lation, there exists a flat metric on a given euclidean quadrangulation , which in turn
induces a complex structure on the sphere, S2. Hence, we are allowed to consider the
sphere with a euclidean quadrangulation as the projective line P1.

Let Q be a sphere quadrangulation. Recall from the introduction that Q is said to
be non-negatively curved whenever Q has no vertex at which more than four quad-
rangles meet. Analogous to Proposition 1 we have:

Lemma 4 Let c be a cone metric on the sphere. Then, there is an associated metric
quadrangulation of the sphere.

Proof Suppose we are given an element c ∈C(κ). Let Fc denote the euclidean fun-
damental region corresponding to c, see Definition 6. Without loss of generality, we
assume that the singular vertices, Sc = {p1, . . . , pN}, appear on ∂F and the boundary
segments connecting singular vertices are geodesics with respect to the cone metric c,
hence they are, possibly broken, straight lines. We will use induction on the cardinal-
ity of Sc. If N = 3 then the euclidean fundamental region is itself a quadrangle. For the
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general case, take 4 consecutive singular points, call p1, p2, p3 and p4 so that there
are no other elements of the singular set on the path from p1 to p4 along the boundary
of F , which is a 2(N−1)-gon, see Figure 7. Note that possible identifications of the
chosen vertices do not pose any problems, for we are only interested in the existence
of a quadrangulation . We now connect p1 to p4 with a straight line to obtain the first
quadrangle. The remaining is now a 2(N−2)-gon, which, by induction assumption,
can be divided into quadrangles finishing the proof.

p1

p2
p3

p4

p5

p6

p5p2 p3
p4

F

Fig. 7 Induction step for the case N = 6.

3.1.1 Shapes of Quadrangulations in E2

Let Z[
√
−1] be the ring of Gaußian integers considered as as subset of E2, or equiv-

alently C. In this section, we will analyze Gaußian lattice quadrangles whose sides
are parallel to the sides of a standard quadrangle and whose vertices are at Gaußian
integers, to which we will refer simply as a lattice quadrangle, see Figure 8 for an
example.

Fig. 8 A Lattice Quadrangle

Such an object is given by two parameters, the number of quadrangles in the
vertical direction to which we will refer as n1, and number of quadrangles in the
horizontal direction to which we will refer as n2. Moreover, a quadrangle having n1
many vertical and n2 many horizontal has A(n1,n2) = n1n2 many quadrangles. In this
coordinates, however, our area form is not diagonal with respect to this basis. There
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is a geometric way of achieving this, see Figure 9. Given any n1 and n2 we consider
the following area form:

A(n1,n2) :=
1
4

(
(n1 +n2)

2− (n1−n2)
2
)
,

which measures the area of a lattice quadrangulation in terms of number of quadran-
gles. Note that the area form is of signature (1,1). One may extend our definition to
the case where n1 are n2 are real numbers. In that case, of course, the real parameters
do not lead to a lattice quadrangulation. So one obtains an R-vector space with a form
of signature (1,1). As n1,n2 ≥ 0, forms a cone, say C , the possible shapes of lattice
quadrangulations are elements of the projective image of C .

Fig. 9 Geometry of diagonalization of the area form(n1 = 1, n2 = 4)

Remark 1 Possible shapes of lattice hexagons, i.e. hexagons whose vertices are at the
Eisenstein integers, Z[e2π

√
−1/3], sides are parallel to the sides of a standard hexagon

are analyzed in [22, §1]. In the case when R is replaced by C, the space that one
obtains is a hermitian form on C1,1.

3.2 ...as a Lattice

In this section we will generalize the results of Section 3.1.1 to shapes of quadrangu-
lations of the sphere. We are going to prove that quadrangulations of the sphere are
given by a lattice inside a complex Lorentzian vector space. The complex hyperbolic
space CHn is defined to be the set of all positive lines in the projectivization, P(C1,n),
of the vector space C1,n. One can give a complex manifold structure to P(C1,n) if one
considers the usual quotient map C1,n \{−→0 } −→ P(C1,n). Thus we may regard CHn

as a complex manifold. Consider Cn with its usual Hermitian form:

〈〈z,w〉〉 :=
n

∑
i=1

ziwi.

By Bn denote the set of all elements, z ∈ Cn, with 〈〈z,z〉〉 < 1. The map Ξ : Cn −→
CHn as:

z = (z1, . . . ,zn) 7→ [z1 : . . . : zn : 1].
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settles an embedding Cn onto the subset of P(C1,n) defined by Zn+1 6= 0 and we
deduce Bn and CHn are complex analytically isomorphic.

Example 1 This situation has already appeared in Section 3.1.1 where it is proved
that possible shapes of quadrangulations of lattice quadrangles in E2 are parametrized
by a cone C inside the projectivization of R1,1. It is, in fact, an example of the above
machinery except the base field was R instead of C.

3.2.1 Non-negatively Curved Quadrangulations of the Sphere

A lattice, Λ , in a vector space V is a free Z-module together with a symmetric bi-
linear form, 〈·, ·〉. More generally, an Eisenstein(respectively Gaußian) lattice is a
free Z[e2π

√
−1/3]-module(respectively Z[

√
−1]-module) with a Hermitian form. Λ is

called integral whenever the Hermitian form takes values in Z[e2π
√
−1/3](respectively

in Z[
√
−1]).

We state now the following:

Theorem 4 ([22, Theorem 0.1]) There is an integral Eisenstein lattice Λ in C1,9

such that Λ+/Aut(Λ) parametrizes non-negatively curved triangulations, i.e. at every
vertex meets at most 6 triangles, of the sphere which have 5 triangles meeting at 12
marked vertices; where Λ+ is the set of lattice points with positive square-norm,
denoting the number of triangles in the triangulation. The quotient of CH9 by the
action of Aut(Λ) has finite volume.

Analogously, we have:

Theorem 5 There is an integral Gaußian lattice, Λ ′ in C1,5 such that Λ ′+/Aut(Λ ′)
parametrizes non-negatively curved quadrangulations of the sphere having 3 quad-
rangles that meet at 8 marked vertices; where Λ ′+ is the set of lattice points with
positive square-norm, which is the number of quadrangles in the quadrangulation.
The quotient of CH5 by the action of Aut(Λ ′) has finite volume.

Given a cone metric c, Lemma 4 provides us with a metric quadrangulation. And
given a metric quadrangulation, Q, of the sphere, for every quadrangle in Q we
draw one of the two diagonals so as to obtain a triangulation, TQ. There are 2| f (Q)|

distinct choices for TQ; where f (Q) denotes the set of faces of a quadrangulation.
We, however, have:

Lemma 5 A(TQ) is independent of the choice of TQ; where A is the hermitian form
defined on the vector space of cocycles, see Equation 5 for the definition of A, and by
abuse of notation we write A(TQ) to denote the area of the cocycle associated to the
metric triangulation TQ.

Proof It is enough to concentrate on one quadrangle. Let ω1, ω2, ω3, ω4 denote
the edges and d1, d2 denote the two possible diagonals of a single quadrangle q ∈
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f (Q), see Figure 10. Let us denote by Ai the value of the hermitian form obtained by
subdividing q using di, i = 1,2 and write:

A1−A2 = [ω1(−ω2)−ω1(−ω2)+ω4(−ω3)−ω4(−ω3)]−
[ω3(−ω1)−ω3(−ω1)+ω2(−ω4)−ω2(−ω4)]

=−ω1ω2 +ω1ω2−ω4ω3 +ω4ω3+

ω3ω1−ω3ω1 +ω2ω4−ω2ω4

=−ω1(ω2 +ω3)+ω4(ω2 +ω3)+ω1(ω2 +ω3)−ω4(ω2 +ω3)

= (ω2 +ω3)(ω1 +ω4)− (ω2 +ω3)(ω1 +ω4)

=−(ω1 +ω4)(ω1 +ω4)+(ω1 +ω4)(ω1 +ω4), as
4

∑
i=1

ωi = 0.

= 0.

ω1
ω3

ω4

ω2 d2

d1

Fig. 10 A quadrangle, q, may be divided into two triangles using both d1 and d2

Proof (Theorem 5) Let us choose κi = π/2 for i∈{1,2, . . . ,8} as curvatures, see The-
orem 2. The vector space of cocycles, Hκ , associated to chosen curvature parameters
has signature (1,8−3) by Proposition 5. We would like to note at this point that as a
consequence of Lemma 5, we may and will write A(Q) for the value of the hermitian
form on a euclidean quadrangulation , instead of a euclidean triangulation. Now, let
Q be a non-negatively curved quadrangulation of the sphere having 8 marked ver-
tices at which exactly 3 quadrangles meet. To Q we associate the cone metric, cQ,
on S2 obtained by declaring that every quadrangle of Q is a unit square. The cocycle,
ZcQ

, associated to cQ is by its very definition an element of H. Moreover, as every
q ∈ f (Q) is a unit square, the difference between the endpoints of the edges under
the developing map are naturally elements of Z[

√
−1]. Let Λ ′ denote the set of all

cocycles. Multiplying and c ∈ Λ ′ by an element of Z[
√
−1] produces an element of

Λ ′. Finally, any two elements of Λ ′, say c1 and c2 gives us the following sum:

A(c1,c2) = ∑
i

Zc1(ei)Zc2(ei)−Zc1(ei)Zc2(ei)

each of whose elements are in Z[
√
−1], hence the sum is an element of Z[

√
−1].
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Proof (Theorem 4, Sketch) Following the same lines of the proof of Theorem 5, we
choose κi = π/3, i = 1, . . . ,12 as curvature parameters and consider the vector space
of cocycles, H, associated to these parameters. For any given triangulation, T , we
declare that each triangle is equilateral of unit side length in order to obtain a eu-
clidean triangulation. We then consider the associated cone metric, cT , which is by
construction an element of H. The Eisenstein lattice, Λ , is comprised of all such
triangulations inside H which is of signature (1,12−3).

Let us now concentrate on the lattice Λ . One has the following inclusion relations:

Λ+ ⊆ C1,9

PΛ+ ⊆ PC1,9

Let now Z be a cocycle in PΛ+. Then the elements above Z may be obtained by
subdivision, see Figure 11 for an example.

Fig. 11 Sub-dividing edges of a triangle

Remark 2 As in the case of quadrangulations of lattice quadrangles, the possible
shapes of quadrangulations of the sphere is obtained via taking the quotient of the
vectors of positive norm by the action of C× on H.

We end this section with two aspects of Theorem 4, and Theorem 5, both of which
are related to the absolute Galois group, Gal(Q). The first one is that, by dualizing
the triangulation, or quadrangulation, one obtains a bipartite graph on S2. This way,
each point of Λ+ and Λ ′+ may be considered as a covering of the thrice punctured
sphere, or a genus zero subgroup of PSL2(R).

To demonstrate another aspect we make a little pause, and introduce origamis and
Veech groups, see [20] or [14] for further details:

Definition 7 An origami is defined to be a finite set of Euclidean squares of side
length one that are glued according to following set of rules:

i. every left edge is identified with a right edge(by a translation),
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ii. every upper edge is identified with a lower one(by a translation),
iii. the closed surface obtained after the identifications is oriented and connected.

The simplest origami, which we call E∗, is obtained by considering only one unit
square. The above rules leaves us no choice but to glue the upper edge with the lower
one, and left edge with the right one. Hence, if we mark a vertex of the square, then
every other vertex of the square has the same marking, and we get a punctured, or
marked, torus, see Figure 12.

Fig. 12 The simplest origami, E∗

For an arbitrary origami, if one marks the vertices considering the identifications
then, one gets a ramified covering of E∗, which is unramified away from the ver-
tices. A surface together with a complex atlas whose every transition function is a
translation is called a translation surface. If one identifies E2 with C then to every
origami, one associated a translation surface, which becomes a Riemann surface un-
der E2 ∼= C. For a translation surface, call X , we define the associated affine group
as:

A f f (X) := {σ : X −→ X |σ is an affine diffeomorphism preserving orientation}.
(9)

In other words, σ can be locally written as Az+ t, for some A ∈ GL2(R) and
t ∈ C. When X is of finite volume, the matrix A ∈ SL2(R). Also, for any matrix
B ∈ SL2(R) one gets another Riemann surface structure, which is essentially the
same structure whenever B ∈ SO2(R). Hence the embedding SL2(R) ↪→Tg,N factors
through the quotient H∼= SL2(R)/SO2(R) ↪→ Tg,N ; where X is a surface of genus g
with N punctures and Tg,N stands for the Teichmüller space of genus g surfaces with
N punctures. The embedding is an isometry with respect to the Poincaré metric on
H and Teichmüller metric on Tg,N , and the image is called a Teichmüller disc, which
is geodesic, see [9]. In view of the above constructions, every point of Λ ′+ represents
an origami hence we conclude that Λ ′+ parametrizes a certain family of Teichmüller
discs in Tg,N for any g and N corresponding to curves having exactly 8 points at
which meets 3 squares instead of 4.

4 Two Applications

As a consequence of the theory we have developed so far, lattices Λ+ and Λ ′+ parametrize
a family of dessins. On the other hand, every lattice point determines a shape param-
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eter in the corresponding moduli space. We believe that these shape parameters are
Q-rational points, see Conjecture 1.

4.1 Shape parameters on Moduli of Pointed Rational Curves

Let c ∈C(κ). If one labels the singular vertices, then one obtains a finite covering of
C(κ), call P(κ), whose fundamental group is the pure braid group of the sphere on N
strands. The group π1(C(κ)) depends solely on the curvature parameters, κi.

On the other hand if we focus only on the complex structure, then we obtain a
mapping from C(κ) to the moduli space of smooth N-pointed rational curves, M0,N .
However, for obvious reasons the mapping cannot be injective. Nevertheless the tar-
get is a finite cover of M0,N :

Theorem 6 ([22, Theorem 8.1]) The map from C(κ) to M0,N , denoted by S, de-
scribed above is a homeomorphism. In particular, when κi = κ j for each i, j ∈
{1, . . . ,N} we have an isomorphism.

There is an inverse to the map S, denoted by S−1, explained in the proof of [22,
Theorem 8.1]]. We, on the other hand, already know an inverse to S. Any element
of M0,N comes with a distinguished set of points which forms the singular set. The
metric, which is unique up to normalization, is the provided by Theorem 2. For further
details see [24].

Similarly, we have T : C(κ1, . . . ,κN)−→ X(κ1, . . . ,κN); where X(κ1, . . . ,κN) de-
notes a finite covering of CNP1. The map sends every euclidean cone metric c to its
singular set Sc. And as in the case of S, the degree of the covering depends on the
curvature parameters. Summing up, we have:

S (C (κ1, . . .κN)) C(κ1, . . . ,κN) S(C (κ1, . . .κN))

CNP1/PGL2(C) M0,N

BN−3/∆(κ1, . . . ,κN)

S

S−1

∼=

S

Sch

Fig. 13 Configuration spaces, moduli of cone metrics and pointed rational curves

Example 2 A classical case of the above phenomenon occurs when one considers the
configuration space of 4 points on P1, in other words when one chooses the parame-
ters as 2π

2 , 2π

2 , 2π

2 , 2π

2 . One obtains the following diagram:
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P1 \{0,1,∞} ∆∞,∞,∞\H

C4P1 PSL2(Z)\H= M1

One, on the other hand, has a natural quadrangulation of each such configura-
tion consisting of two quadrangles. As we did in the proof of Theorem 5, let us set
each quadrangle to be a euclidean unit square. Then the curve in M1 one gets has the
affine equation y2 = x3− x, which is defined over Q. As the map between M1 and
M0,4 is algebraic the corresponding pointed rational curve is also defined over Q. Al-
ternatively, for the curve corresponding to the quadrangulation consisting of two unit
squares glued from their boundary, one may take the fourth ramification point to be
defined over Z[

√
−1], hence the Jacobian has complex multiplication, [17, Theorem

12.8], thus we get an algebraic point.

Conjecture 1 (Shape parameters are algebraic) The elements of PΛ+ and PΛ ′+ are
Q-rational points on M0,12 and M0,8, respectively.

4.2 Graphs on Surfaces

In this section we demonstrate an application of the lattice Λ ′ on embedded graphs
(dessins of Grothendieck in [11]). An embedded graph or a map is a graph, Γ , embed-
ded into a topological surface, X , i.e. a closed, oriented, two dimensional topological
manifold so that (*) edges intersect only at vertices, and (**) each connected com-
ponent of X \{image of Γ } is homeomorphic to a disc. The embedding of the graph
into X is denoted by ι .

It is common to regard graphs as cell complex comprised only of 0 and 1 cells,
and hence embedded graphs as an injection ι : Γ −→ X satisfying X \ ι(Γ ) is a union
of open sets each of which is homeomorphic to a disc. Each connected component of
X \ ι(Γ ) is called a face of Γ .

We have the following well-known result.

Theorem 7 ([3]) An algebraic curve X may be defined over the field of algebraic
numbers, Q, if and only if X admits a meromorphic function (or a Belyı̆ morphism),
f : X −→ C, ramified at most over 3 points which may be chosen to be 0, 1 and ∞.

So, given an arithmetic curve, X , one has a corresponding Belyı̆ morphism, β ,
and inverse image of the closed real interval [0,1]⊂ P1 is an embedded graph on X ,
and vice versa, [25, Proposition 1]. One further has the following:

Theorem 8 The following categories are equivalent:

– finite topological covers of P1
C \{0,1,∞},

– finite connected étale covers of P1
Q \{0,1,∞},

– finite sets equipped with the action of π
alg
1 (P1

Q \{0,1,∞}),
– subgroups of π1(P1

C \{0,1,∞}) up to conjugation,
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– embedded graphs

Observe that since X is oriented, around each vertex of Γ there is a canonical
orientation of the edges of Γ coming out of this vertex. Keeping in mind these ob-
servations we define two embedded graphs to be equivalent if there is a map between
vertices and edges respecting orientation.

Fig. 14 A Graph Embedded in the Riemann Sphere

4.2.1 Division values of Elliptic Functions and Belyı̆ Morphisms

There is a natural family of curves, say Yn, each of which is defined over a number
field by Theorem 7, whose nth element can be constructed as follows:

1. Take a unit Euclidean square,
2. Divide the edges of the square into n equal parts,
3. Connect the possible edges by new lines parallel to edges of the square, call the

resulting square Qn,
4. Mark the midpoints of the squares with a black vertex, and connect the black

vertices lying in neighboring squares,
5. Put a white vertex at every point where lines connecting black vertices and new

lines intersects,
6. Identify the top edges with bottom and left edge with right to get a torus, see

Figure 15.
7. Use the inclusion relation between Z[

√
−1] and ∆2,4,4 to project down to P1, see

Figure 16 for a geometric description, and obtain Yn.

Fig. 15 First two tori with embedded graphs.
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The embedded graph defining the curve Yn will be referred to as Γn. Figure 17 displays
the curve Y3 together with Γ3. To every Γn, one may associate a quadrangulation of
the sphere by connecting the midpoint of each face by the white vertices lying on
the boundary of the face. Observe that such a quadrangulation is an element of the
compactification of the space in which the lattice Λ ′ found in Theorem 5 lies.

Fundamental region

for ∆2,4,4

Fundamental region

for Z[
√
−1]

Fig. 16 Geometric description of the natural projection between ∆2,4,4 and Z[
√
−1]

The computation uses the following commutative diagram: where the functions

Z[
√
−1]\C Z[

√
−1]\C

Hn\C ∆(2,4,4)\C P1

mn

η1
η2

η1 and η2 refers to the solutions of the hypergeometric differential equation for ∆2,4,4,
Hi corresponds to the subgroup of PSL2(R) making the square commutative, mi refers
to the multiplication by i self-morphism of the elliptic curve Z

√
−1\C, which has

Weierstraß form y2 = 4x3− x.
The corresponding Belyı̆ morphisms in this case are composition of the arrows

on the bottom. However, we know the ramification points are the i-division values of
a particular elliptic function, where by an i-division value we mean the value of an
elliptic function at points x ∈ Z

√
−1\C so that x /∈ Z[

√
−1] however n ·x ∈ Z[

√
−1].

Our aim is thus to find the ramification points of the Belyı̆ morphism. For our pur-
poses it is enough to consider the elliptic function, w = ε(z),

z 7→ w =
1

(℘(ω3)−℘(ω1))(℘(ω3)−℘(ω1))
(℘(z)−℘(ω1))(℘(z)−℘(ω2))

=−4℘
2(z)+1,

where ω1 is the real and ω2 is the purely imaginary period of y2 = 4x3 − x, and
ω3 =

1
2 (ω1 +ω2). The last equality is a result of the fact that ℘(ω1) =

1
2 =−℘(ω2),
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which implies ℘(ω3) = 0. Then the Belyı̆ morphism corresponding to Yn, which we
call the Gauss-Chebyshev function, has the following general form (up to a constant)

gn(w) := cn
∏z∈ white vertices (w− ε(z)ord(z))

∏z∈ poles (w− ε(z))ord(z)

where by poles we mean midpoints of faces, and by order the valency of correspond-
ing vertex or face, and cn is a constant which will be described in Example 3.

Example 3 We would like to demonstrate the case n = 3, whose dessin can be found
in Figure 17. The list of ramification points may be found in Table 2. Thus, g3 is:

c3

[
∏p∈P3

(w− ε(p))∏q∈Q3
(w− ε(q))2

]
(w− ε(0))(w− ε( 2ω1

3 ))2(w− ε( 2ω3
3 ))2(w− ε( 4ω1

3 ))2

where c3 is the normalization constant and P3 = {ω1
3 ,ω1,

5ω1
3 },

Q3 := { 2ω1
3 ) + ω2

3 ,ω1 +
2ω2

3 , 4ω1
3 ) + ω2

3 }. As 1 is a ramification value, we choose
c3 =

1
g3(ω3)/3 , and in general, cn =

1
gn(ω3/n) .

The well-known formula

℘(z+ z′) =
1
4

[
℘′(z)−℘′(z′)
℘(z)−℘(z′)

]
−℘(z)−℘(z′)

together with the fact that ℘(ω1),℘(ω2) ∈Q implies that for every n the values of ε

are algebraic. However as n assumes larger values the degree of the algebraic number
gets larger, too. Numerical data for the ramification points of g3 may be found in
Table 2.

white vertices black vertices poles
(inverse image of 0) (inverse image of 1) (inverse image of ∞)

1
3 ω1

1
3 ω3 0

2
3 ω1 +

1
3 ω2 ω1 +

1
3 ω2

2
3 ω1

ω1 ω3
2
3 ω3

ω1 +
2
3 ω2

5
3 ω1 +

1
3 ω2

4
3 ω1

4
3 ω1 +

1
3 ω2

4
3 ω1 +

2
3 ω2

5
3 ω1 2ω1 = 0 mod Z[

√
−1]

Table 1 Points on E whose values give ramification data of g3

Remark 3 A similar family for the lattice Λ appeared in Theorem 4 may be defined.
The description of the family and corresponding calculations of Belyı̆ morphisms as
well as an application to curves of higher genera may be found in [27].

Conjecture 2 The Galois action on the dessin related to a lattice point and the Galois
action on the corresponding shape parameter are compatible.
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Fig. 17 The curve Y3

zeros of g3

ε( 1
3 ω1) =−26.8204616940335

ε( 2
3 ω1 +

1
3 ω2) = 0.9282032302755+0.9974192818755

√
−1

ε(ω1) = 0
ε(ω1 +

2
3 ω2) = 0.9640552334825

ε( 4
3 ω1 +

1
3 ω2) = 0.9282032302755−0.9974192818755

√
−1

ε( 5
3 ω1) =−26.8204616940335

poles of g3
ε(0) = ∞

ε( 2
3 ω1) =−1.15470053837925

ε( 2
3 ω3) = 1.15470053837925

ε( 4
3 ω1) =−1.15470053837925

ε( 4
3 ω1 +

2
3 ω2) = +1.15470053837925

Table 2 Zeros and poles of g3
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