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1. Introduction

In contrast with the considerable literature on the orbifolds over P2 uniformized
by the 2-ball B2 (see [17], [8], [10] [16] and references therein), not much is known
about which orbifolds over Pn are uniformized by the product of 1-balls (B1)n. The
aim of the present article is to construct some orbifolds over the projective space
Pn uniformized either by (P1)n, Cn or (B1)n and prove the following result.

Theorem 1.1. Let (n, b) be a pair of coprime integers with n ≥ 2. There exists
a Galois covering

(
D

(b)
n,1

)n → Pn of degree n!bn
2−n branched along an irreducible

degree-2b(n − 1) hypersurface D
(b)
n ⊂ Pn where D

(b)
n,1 ⊂ D

(b)
n is a curve of euler

number e = bn−1(n+ 1 + b− nb).

For b = 1, the hypersurface D(1)
n is the discriminant hypersurface, and D(1)

n,1 ' P1

is a rational normal curve. In this case one obtains the well-known branched Ga-
lois covering (P1)n → Pn. The subvarieties D(b)

n and D
(b)
n,1 are the liftings respec-

tively of D(1)
n and D

(1)
n,1 by an abelian branched self-covering [Z0, . . . , Zn] ∈ Pn →

[Zb
0, . . . , Z

b
n] ∈ Pn. For (n, b) ∈ {(3, 2), (2, 3)} one has e

(
D

(b)
n,1

)
= 0, and the univer-

sal covering of
(
D

(b)
n,1

)n is Cn. The curve D(3)
2 = D

(3)
2,1 is a nine-cuspidal sextic, dual

of a smooth cubic. For b > 1 and (n, b) /∈ {(3, 2), (2, 3)} one has e
(
D

(b)
n,1

)
< 0, and

the universal covering of
(
D

(b)
n,1

)n is (B1)n.
In case (n, b) = (2, 3), the claim of Theorem 1.1 was proved in [12]. The case

n = 2 was established in [16]. In this case, D(b)
2 coincides with D

(b)
n,1, which is a

curve of genus 1
2 (b2−3b+2) with 3b cusps of type x2 = yb and no other singularities,

see Appendix for a proof. Irreducibility of D(b)
n is proved in Proposition 4.2. The

remaining assertions of Theorem 1.1 are proved in Theorem 4.4. Our construction
leads naturally to the definition of orbifold braid groups of the sphere P1 with
punctures, which we dicuss in Section 4. These groups were already introduced by
Allcock [1] in the “braid-picture” setting for some basic cases.
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2. Orbifolds

Let M be a connected complex manifold, G ⊂ Aut(M) a properly discontinuous
subgroup and putN := M/G. Then the projection φ : M → N is a branched Galois
covering endowing N with a map βφ : N → N defined by βφ(p) := |Gq| where q is a
point in φ−1(p) and Gq is the isotropy subgroup of G at q. In this setting, the pair
(N, βφ) is said to be uniformized by φ : M → (N, βφ). An orbifold is a pair (N, β)
of an irreducible normal analytic space N with a function β : N → N such that
the pair (N, β) is locally finitely uniformizable. A covering φ : (N ′, β′) → (N, β)
of orbifolds is a branched Galois covering N ′ → N with β′ = (β oφ)/βφ oφ. Note
that the restriction (N ′, 1) → (N, βφ) is a uniformization of (N, βφ). Conversely,
let (N, β) and (N, γ) be two orbifolds with γ|β, and let φ : (N ′, 1) → (N, γ) be a
uniformization of (N, γ), e.g. βφ = γ. Then φ : (N ′, β′) → (N, β) is a covering,
where β′ := β oφ/γ oφ. The orbifold (N ′, β′) is called the lifting of (N, β) to the
uniformization N ′ of (N, γ).

Let (N, b) be an orbifold, Bβ := supp(β − 1) and let B1, . . . , Bn be the irre-
ducible components of Bβ . Then β is constant on Bi\sing(Bβ); so let bi be this
number. The orbifold fundamental group πorb

1 (N, β) of (N, β) is the group de-
fined by πorb

1 (N, β) := π1(N\Bβ)/〈〈µb1
1 , . . . , µ

bn
n 〉〉 where µbi

i is a meridian of Bi

and 〈〈〉〉 denotes the normal closure. An orbifold (N, β) is said to be smooth if N
is smooth. In case (N, β) is a smooth orbifold the map β is determined by the
numbers bi; in fact β(p) is the order of the local orbifold fundamental group at p.
Since the orbifolds to be considered in this article are exclusively smooth, we shall
adopt the convention that such orbifolds are defined to be the pairs (N,B) where
B := b1B1 + · · · + bnBn is a divisor with bi ≥ 1. We shall also allow bi to take
infinite values, meaning that the corresponding hypersurface Bi is removed from
the base space N . If O := (N,B) is an orbifold and C a hypersurface in N , then
we shall use the notation (O, bC) to denote the orbifold (N,B + bC).

3. Discriminants

For a recent treatment of discriminant varieties, see Katzs’ article [13] or [9].
Let n ≥ 1 be an integer and consider the action of the symmetric group Σn on
(P1)n. Let pi = [ui, vi] ∈ P1 and let σj (j ∈ [0, n]) be the homogeneous elementary
symmetric polynomial

σj(p1, . . . , pn) :=
∑

A⊂[1,n], |A|=j

 ∏
α∈A

xα

∏
β∈[1,n]\A

yβ


It is well known that the map φn : (P1)n → Pn given by

φn : (p1, . . . , pn) := [σ0(p1, . . . , pn) : · · · : σn(p1, . . . , pn)]

is Σn- invariant and gives an isomorphism (P1)n/Σn ' Pn.
Let πi : (P1)n → P1 be the ith projection map, q a point in P1, and put F i

q :=
π−1

i (q). Let τij ∈ Σn be the transposition exchanging the ith and jth coordinates
of (p1, . . . , pn) ∈ (P1)n. Since τ1iF

1
q = F i

q , the hypersurface Hq := φn(F i
q) does not

depend on i.
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Lemma 3.1. For any q ∈ P1, the hypersurface Hq is a hyperplane in Pn. For
any set {q0, . . . , qm} ⊂ P1 of distinct points, the hyperplanes Hq0 , . . . ,Hqm are in
general position.

Proof. Suppose without loss of generality that i = 1. Then Hq is parametrized
as Hq = [X0 : X1 : · · · : Xn] ∈ Pn, where Xj = σj(q, p2, . . . , pn) and pi ∈ P1

(i ∈ [2, n]). If q = [u1 : v1] = [x : y] and pi = [ui : vi] (i ∈ [2, n]) then one has the
identity

(3.1) P (A,B) :=
∑

j∈[0,n]

(−1)n−jσj(q, p2, . . . , pn)AjBn−j =
∏

i∈[1,n]

(uiA− viB)

Substitute [A : B] = [y : x] in (3.1). Since the right-hand side of (3.1) vanish at
the point (q, p2, . . . , pn), so does the middle term, and thus Hq satisfies the linear
equation

(3.2)
∑

j∈[0,n]

(−1)n−jyjxn−jXj = 0

Let {qi = [xi : yi] : i ∈ [0, n]} be a set of n + 1 points. Since the determinant of
the projective Vandermonde matrix Van(q0, . . . , qn) given by

Vani,j(q0, . . . , qn) := (−1)n−jyj
i x

n−j
i i, j ∈ [0, n]

vanish if and only if qi = qj for some i, j ∈ [0, n], the hyperplanes Hq0 , . . . ,Hqn are
always in general position. �

The hypersurface ∆n := {(p1, . . . , pn) ∈ (P1)n : pi = pj for some 1 ≤ i 6= j ≤
n} of (P1)n consists of points fixed by an element of Σn, so that the covering φn

is branched along the hypersurface Dn := φ(∆n), which is called the discriminant
hypersurface since it is defined by the discriminant of the homogeneous polynomial
P (A,B). In terms of orbifolds, this means that there is an orbifold covering

(3.3) φn :
(
(P1)n, a∆n

)
→ (Pn, 2aDn)

Let {q0, . . . , qm} ⊂ P1 be m+ 1 distinct points, b0, . . . , bm numbers in N ∪ {∞}
and consider the orbifold

F(b0, . . . , bm) := (P1, b0q0 + · · ·+ bmqm)

Let n ≥ 1 be an integer and consider the orbifold F(b0, . . . , bm)n. Let Gn be the
orbifold

Gn(a; b0, . . . , bm) :=
(
F(b0, . . . , bm)n, a∆n

)
and define the orbifold Hn(a; b0, . . . , bm) as

Hn(a; b0, . . . , bm) := (Pn, aDn + b0Hq0 + · · ·+ bmHqm
)

By the covering in (3.3) and Lemma 3.1 one has the fact

Lemma 3.2. There is an orbifold covering of degree n!

φ : Gn(a; b0, . . . , bm)→ Hn(2a; b0, . . . , bm)

In particular, for a = 1 one has the orbifold covering

φ : F(b0, . . . , bm)n ' Gn(1; b0, . . . , bm)→ Hn(2; b0, . . . , bm)

The following facts are well known (see [15]):
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Theorem 3.3. [Bundgaard-Nielsen,Fox] The orbifold F(b0, . . . , bm) admits a finite
uniformization if n > 1, bi < ∞ (1 ≤ i ≤ m) and if n = 2, then b := b0 = b1. Let
R→ F(b0, . . . , bm) be a finite uniformization.
(i) R ' P1 if n = 2, b0 = b1 <∞ or n = 3, b−1

0 + b−1
1 + b−1

2 > 1. In this case , P1 is
also the universal uniformization. The groups πorb

1

(
F(b, b)

)
and πorb

1

(
F(b0, b1, b2)

)
are finite of orders b and 2

[
b−1
0 + b−1

1 + b−1
2 − 1

]−1 respectively.
(ii) R is of genus 1 if n = 3, b−1

0 + b−1
1 + b−1

2 = 1 or n = 4, b0 = b1 = b2 = b3 = 2.
Hence, C is the universal uniformization of these orbifolds. Moreover, F(∞,∞) and
F(2, 2,∞) are uniformized by C. The corresponding orbifold fundamental groups
are infinite solvable.
(iii) R is of genus > 1 otherwise, and the universal uniformization is (B1)n, where
B1 is the unit disc in C. The corresponding orbifold fundamental groups are big
(i.e. they contain non-abelian free subgroups).

In virtue of the covering φ : F(b0, . . . , bm)n → Hn(2; b0, . . . , bm) one has the result

Corollary 3.4. Let n > 1, bi <∞ (1 ≤ i ≤ m) and if n = 2, then b0 = b1. Then
the orbifold Hn(2; b0, . . . , bm) admits a finite uniformization by Rn, where R is the
uniformization of F(b0, . . . , bm) given in Theorem 3.3. The orbifolds H(2;∞,∞)
and H(2; 2, 2,∞) are uniformized by Cn. Moreover, πorb

1

(
H(2; b, b)

)
is a finite group

of order n!bn and πorb
1

(
H(2; b0, b1, b2)

)
is a finite group of order n!2n

[
b0 + b1 + b2−

1
]−n if b−1

0 + b−1
1 + b−1

2 > 1.

4. Another covering of H(a; b0, . . . , bm)

Let b ∈ N be an integer and consider the orbifold Kn(b) := (Pn, bHq0+· · ·+bHqn).
By Lemma 3.1, the hyperplanes Hq0 , . . . ,Hqn

are in general position. It is well
known that the universal uniformization of this orbifold is Pn. Applying a projective
transformation one may assume that the hyperplanesHqi

are given by the equations
Yi = 0 where [Y0 : · · · : Yn] ∈ Pn. In this case the uniformization ψb : Pn → Kn(b)
is nothing but the map

[Y0 : · · · : Yn] = ψb([Z0 : · · · : Zn]) = [Zb
0 : · · · : Zb

n]

It is clear that the orbifold Hn(a; bb0, . . . , bbn, bn+1, . . . , bm) lifts to the uniformiza-
tion of Kn(b). Put D(b)

n := ψ−1
b (Dn), denote Mqi

:= ψ−1(Hqi
) and define the

orbifold
L(b)

n (a; b0, . . . , bm) := (Pn, aD(b)
n + b0Mq0 + . . . bnMqm

)

to be this lifting. In case n = 2 these liftings were studied in [16]. For n > 2 the
following proposition is valid:

Proposition 4.1. For n > 2 and b ≥ 2 the orbifolds L(b)
n (2; b0, . . . , bm) are uni-

formized by (B1)n except the orbifold L(2)
3 (2), which is uniformized by C3.

Proof. There is an orbifold covering L(b)
n (2; b0, . . . , bm) −→ Hn(a; bb0, . . . , bbn).

The claim follows, since by Corollary 3.4 the latter orbifold is uniformized by C3 if
b = 2, n = 3, b0 = · · · = bn = 1 and by (B1)n otherwise. �

For k ∈ [1, n], define the k-dimensional subvarietiy ∆n,k of ∆n by

∆n,k := {(p1, p2, . . . , pn) ∈ (P1)n : pk = pk+1 = · · · = pn} ' (P1)k
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Thus, ∆n,n−1 is an irreducible component of ∆n and ∆n,1 is the diagonal in (P1)n.
The subgroup of Σn acting on ∆n,k is a symmetric group Σk−1, so that Dn,k :=
P1 × Pk−1. These varieties admits the parametrizations

(4.1) Dn,k : [X0 : · · · : Xn] ∈ Pn Xj = σj(p1, . . . , pn), pk = · · · = pn

In particular, the curve Dn,1 is a rational normal curve parametrized as[(
n
0

)
vn,

(
n
1

)
uvn−1, . . . ,

(
n
n

)
un

]
([u : v] ∈ P1)

Applying the projective transformation Van(q0, . . . , qn) to the parametrizations
(4.1) gives the parametrization Dn,k : [Y0 : · · · : Yn] ∈ Pn, where

(4.2)
∑

j∈[0,n]

(−1)n−jyj
i x

n−j
i σj(p1, . . . , pn), pk = · · · = pn

Let pi = [ui : vi] and let [u : v] = [uk : vk] = · · · = [un : vn]. In virtue of the
identity (3.1) one has the parametrizations Dn,k : [Y0 : · · · : Yn] ∈ Pn where

(4.3) Yj = (uyj − vxj)n−k+1
∏

i∈[1,k−1]

(uiyj − vixj)

In particular, the curve Dn,1 is parametrized as

(4.4) Dn,1 :
[
(uy0 − vx0)n : · · · : (uyn − vxn)n

]
The varieties D(b)

n,k are parametrized as

(4.5) D
(b)
n,k : [Z0 : · · · : Zn] Zb

j = (uyj − vxj)n−k+1
∏

i∈[1,k−1]

(uiyj − vixj)

Note that the parametrizations (4.3) and (4.5) are not generically one-to-one unless
k ≤ 2, since (4.3) is a map (P1)k → Dn,k.

Proposition 4.2. (i) The curve D(b)
n,1 is irreducible if and only if gcd(n, b) = 1.

Hence, the subvarieties D(b)
n,k are irreducible if gcd(n, b) = 1.

Definition 4.3. Let t ∈ Z and ψt be the map

ψt : [Z0 : · · · : Zn] ∈ Pn → [Zt
0 : . . . Zt

n] ∈ Pn

Let V ⊂ Pn be a subvariety and r, s ∈ Z such that s > 1. Then V (r/s) is the
subvariety of Pn defined as

V (r/s) := (ψ−1
r oψs)(V )

In particular, V (r/r) is the orbit of V under the (Z/(r))n-action on Pn.

Proof of the Proposition. The parametrization (4.4) shows that Dn,1 ' L1/n,
where L is a line ⊂ Pn in general position with respect to ψn, in other words L
intersects the hyperplane arrangement Z0 . . . Zn = 0 transversally at smooth points.
Hence there is a surjection of fundamental groups

(4.6) π1(L\{q̃0, . . . , q̃n}) � π1(Pn\{Z0, . . . , Zn})

where q̃i := Zi ∩ L. LetM(b), K(b) be the orbifolds

M(b) := (L, bq̃0 + · · ·+ bq̃n), K(b) := (Pn, bZ0 + · · ·+ bZn)
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Then (4.6) induce a surjection of orbifold fundamental groups

πorb
1

(
M(b)

)
� πorb

1

(
K(b)

)
(one may say: M(b) is a sub-orbifold of K(b)). This shows that the curve L(b) is
irreducible and is a uniformization of M(b). Since gcd(n, b) = 1, one has D(b)

n,1 =

L(b/n), showing that D(b)
n,1 is irreducible. Note that D(b)

n,1 is the maximal abelian

orbifold covering of M(b). Irreducibility of D(b)
n,k follows since D(b)

n,1 is a subvariety

of D(b)
n,k. �

Let O(b) be the orbifold O(b) := (Dn,1, bq̄0 + · · ·+ bq̄n), where q̄i := Yi ∩Dn,1. The
orbifold O(b) is identified via the covering φ with the orbifold P(b) := (∆n,1, bq

′
0 +

· · ·+bq′n), where this time q′i := φ−1(q̄i). In turn, O(b) is identified with the orbifold
F(b, . . . , b) via the coordinate projection. By the proof of Proposition 4.2, these
orbifolds are identified with the orbifoldM(b) in case (n, b) = 1.

Theorem 4.4. Let gcd(n, b) = 1. Then there is a finite uniformization ξn :
(D(b)

n,1)
n −→ L(b)

n (2) which is of degree n!bn
2−n.

Proof. One has the diagram

ξn

L(b)
n (2) ←−−−− (D(b)

n,1)
n

ψb

y
y ζb

φn

Hn(2; b, . . . , b) ←−−−− O(b)n

where ζb : (D(b)
n,1)

n → O(b)n is the maximal abelian orbifold covering and ξn is
to be shown to be a branched Galois covering of degree n!bn

2−n. It suffices to
show that the group H := (φn o ζb)∗π1

(
(D(b)

n,1)
n
)

is a normal subgroup of K :=

(ψb)∗πorb
1

(
L(b)

n (2)
)
. Let σ be a meridian ofDn. Then since πorb

1

(
Hn(2, b, . . . , b)

)
/〈〈σ〉〉 '

πorb
1

(
Kn(b)

)
'

(
Z/(b)

)n is the Galois group of ψb, the group K is the normal
subgroup of πorb

1

(
Hn(2, b, . . . , b)

)
generated by σ, i.e. K ' 〈〈σ〉〉. The group

πorb
1

(
Hn(2, b, . . . , b)

))
/K being abelian, one has [τi, τj ] ∈ K for i, j ∈ [0, n]. On

the other hand one has

πorb
1

(
Hn(2; b, . . . , b)

)
/〈〈τ0, . . . , τn〉〉 ' πorb

1

(
Hn(2)

)
' Σn

Since Σn is the Galois group of φn, one has φ∗O(b)n ' 〈〈τ0, . . . , τn〉〉. Since ζn is the
maximal abelian orbifold covering, one has H ' 〈〈[τi, τj ]〉〉. This shows that H is a
normal subgroup of K. Since deg(ζb) = bn

2
, deg(φn) = n! and deg(ψb) = bn, one

has

deg(ξn) =
deg(ζb) deg(φn)

deg(ψb)
= n!bn

2−n

The euler number of D(b)
n,1 is easily computed by the Riemann-Hurwitz formula. �

5. Braid Groups
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Following and generalizing Allcock [1], let us call the groups

Pn(a; b0, . . . , bm) := πorb
1

(
Gn(a; b0, . . . , bm)

)
the pure braid groups of F(b0, . . . , bm) on n strands, and the groups

Bn(a; b0, . . . , bm) := πorb
1

(
Hn(a; b0, . . . , bm)

)
the braid groups of F(b0, . . . , bm) on n strands. Obviously, the group Bn(a; b0, . . . , bm)
is a quotient of Bn(a′; b′0, . . . , b

′
m) provided a|a′ and bi|b′i for 0 ≤ i ≤ n. The

group Bn(a; b0, . . . , bm) is a subgroup of Bn+k(a; bk, . . . , bm) in case the equality
a = b0 = · · · = bk−1 holds. The group Bn(2a; b0, . . . , bm) is a normal subgroup of
index n! in the group Pn(a; b0, . . . , bm). The group Bn(a; b0, . . . , bm) admits the
presentation (see [2] for the case n = 2 and [4], [5], [14] for the general case)

(1) generators: σ1, . . . , σn−1, τ0, . . . , τm
(2) braid relations: [σi, σj ] = 1, |i− j| > 1,

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 1
(3) mixed relations (σ1τi)2 = (τiσ1)2, 1 ≤ i ≤ m,

[τi, σj ] = 1, j 6= 1, 1 ≤ i ≤ m
[σ1τiσ

−1
1 , τj ] = 1, 1 ≤ i < j ≤ m

(4) projective relation1 σ1σ2 . . . σn−1τ0 · · · τmσn−1 . . . σ2σ1 = 1
(5) orbifold relations τ b0

0 = · · · = τ bm
m = σa

1 = 1

In particular, the group Bn(∞;∞) is the usual braid group of C introduced by
Artin [3]. The group Bn(∞) ' Bn(∞; 1) is the braid group of the sphere, see [18].
On the other hand, one has

B1(b0, . . . , bm) ' 〈τ0, . . ., τm | τ b0
0 = . . . = τ bm

m = τ0 · · · τm = 1〉

In case n = 2, the discriminant hypersurface D
(1)
2 is a smooth quadric, and

the lines Hqi are tangent to D(1)
2 (see [16]). In particular, the groups B2(a; b) are

abelian. The group B2(a; b, c) admits the presentation

(5.1) B2(a; b, c) ' 〈τ, σ | (τσ)2 = (στ)2, τ b = (τσ2)c = σa = 1〉

Proposition 5.1. For b, c <∞, the group B2(a; b, c) is a finite central extension of
the triangle group T2,a,d : 〈τ, σ | (τσ)2 = τd = σa = 1〉, where d := gcd(b, c). Hence,
B2(a; b, c) is finite 1/a+1/b > 1/2, infinite almost solvable if 1/d+1/a = 1/2, and
big otherwise (i.e. it contains non-abelian free subgroups). The group B2(a; b, b) is
of order 2b

[
a−1 + b−1 − 2−1

]−1 if 1/a+ 1/b > 1/2.

Proof. Note that δ := (τσ)2 is central in B2(a; b, c), so that (τσ2)c = 1 ⇔
(στσ)c = 1 ⇔ (τ−1δ)c = τ−cδc = 1. The element δ is of finite order. Adding the
relation δ = 1 to the presentation (5.1) yields the triangle group T2,a,d, which is
finite if 1/a+ 1/d > 1/2, infinite solvable if 1/a+ 1/d = 1/2, and big otherwise. In
case c = b, one has d = b and the triangle group is of order 2

[
a−1 + b−1− 2−1

]−1 if
1/a+ 1/b > 1/2, which shows that B(a; b, b) is of order 2b

[
a−1 + b−1− 2−1

]−1. �

1The projective relation was kindly communicated by Paolo Bellingeri.
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Let Rn be a uniformization of the orbifold
(
F(b0, . . . , bm)

)n. If k ≥ m then any
orbifold Gn(2a; c0b0, . . . cmbm, cm+1, . . . , ck) can be lifted to Rn. In case R ' P1 or
R ' C one obtains some arrangements associated to reflection groups as follows.
Suppose that q0 = [0 : 1] and q1 = [1 : 0]. Lifting Gn(2a; cb,∞) to the uniformization
of Gn(2; b, b) yields the orbifold (Cn, a∆(b)

n + cF ) where F := {(X1, . . . , Xn) ∈ Cn :
X1 · · ·Xn = 0} and ∆(b)

n is the lifting of the superdiagonal

∆(b)
n := {(X1, . . . , Xn) ∈ Cn : ψb(pi) = ψb(pj) for some 1 ≤ i 6= j ≤ n}

with ψb(X) = Xb if b < ∞ and ψ∞(X) = exp(2πiX). Setting b = 2 in this
construction identifies the group Bn(∞;∞,∞) with the Artin group corresponding
to the diagrams Bn (see [1]).

The groups B2(a; b, c, d) admits the simplified presentation (see [16])

B2(a; b, c, d) '
〈
τ, ρ, σ

∣∣∣∣ (τσ)2 = (στ)2, (ρσ)2 = (σρ)2, [ρ, τ ] = 1,
τ b = (στσρ)d = ρc = σa = 1

〉
We summarized the known information about the orbifoldsH and the corresponding
braid groups in Table 1 below. Suppose that if (n,m) = (2, 1) then b0 = b1. We
believe that the group Bn(a; b0, . . . , bm) is finite if

2(n− 1)
a

+
∑

i∈[0,m]

1
bi
> n+m− 2,

at most infinite solvable if the equality holds, and big otherwise.

6. Remarks

Consider the restriction of Dn,k to the n − k + 1 dimensional linear subspace
Mn−k+1 := {[Y0 : · · · : Yn] ∈ Pn |Yn−k+2 = · · · = Yn = 0} of Pn. Setting [u : v] =
[xn : yn] and [ui : vi] = [xn−i : yn−i] for i ∈ [1, k − 2] in (4.3) we see that Dn,k

has a 1-dimensional linear component L in Mn−k+1 ' Pn−k+1, parametrized as
[Y0 : · · · : Yn−k+1] ∈Mn−k+1 where

Yl = (unyl − vnxl)(xnyl − ynxl)n−k+1
∏

i∈[2,k−1]

(xn−iyl − yn−ixl)

for l ∈ [0, n− k + 1] and [un : vn] ∈ P1. It is readily seen that there are k − 1 such
lines. In case [ui : vi] = 0 for i ∈ [1, k − 1], one has the curve C in Dn,k ∩Mn−k+1

parametrized as [Y0 : · · · : Yn−k+1] ∈Mn−k+1 where

Yl = (uyl − vxl)n−k+1
∏

i∈[1,k−1]

(xn−iyl − yn−ixl)

for l ∈ [0, n − k + 1] and [u : v] ∈ P1, which shows that C is the curve E(1/n−k+1)

for some line E in Pn−k+1. The lines L are tangent to C with multiplicity n−k+1.
In case k = n − 1, one has Mn−k+1 ' P2, and one obtains an arrangement of a
quadric C with n − 2 tangent lines. The lines Y0 = 0, Y1 = 0 and Y2 = 0 are also
tangent to this quadric.

From these considerations it is easy to obtain a description of the intersection of
D

(b)
n,k with Pn−k+1 ' Zn−k+2 = · · · = Zn = 0. For D(2)

3,2, this is the arrangement of
a quadric with four tangent lines.

Let H ⊂ Pn be a hyperplane. The intersection H(1/2)∩M2 is a quadric, tangent
to the lines Y0 = 0, Y1 = 0 and Y2 = 0, which is very similar to the intersections
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Orbifold Uniform. Braid group Ref.

Hn(2) (P1)n n! Cor. 3.4

Hn(2; b, b) (P1)n n!bn Cor. 3.4

Hn(2; b, c, d)(
1/b + 1/c + 1/d > 1

) (P1)n n!2n
[

1
b

+ 1
c

+ 1
d
− 1

]−n
Cor. 3.4

Hn(2; b, c, d)(
1/b + 1/c + 1/d = 1

) Cn Crystallographic Cor. 3.4

Hn(2; 2, 2, 2, 2) Cn Crystallographic Cor. 3.4

Hn(2; b0, . . . , bm)
(otherwise)

(B1)
n Linear Cor. 3.4

Hn(∞;∞,∞) - Bn-Artinian [6]

H2(∞;∞,∞,∞) - C̃2-Artinian [6]

H2(a; b, b)
(1/a + 1/b > 1/2)

- 2b
[

1
a

+ 1
b
− 1

2

]−1
Prop. 5.1

H2(a; b, b)
(1/a + 1/b = 1/2)

- ∞ almost solvable Prop. 5.1

H3(a;∞) (a = 3, 4, 5) - 24, 96, 600 [7]

Hn(3;∞) (n = 4, 5) - 648, 155520 [7]

H3(∞; 2) - 192 Maple

H4(a) (a = 4, 5) - 192, 60 Maple

H5(4) - 120 Maple

H2(a; 2, 2, 2) K3 (a = 4) 4a3 [16]

H2(3; 3, 2, 2) K3 576 [16]

H2(3; 3, 4, 4) H2(4; 4, 4, 4)
H2(3; 6, 6, 2) H2(3; 3, 3, 6)

B2 Picard Modular [11],[16]

H2(3; 3, 4, 2) H2(6; 3, 3, 2) B1 × B1? Unknown [16]

Table 1

Dn ∩M2. In contrast with this, there is the following fact: In a recent article [13],
it was proved that the dual of Dn is one dimensional (we believe that Dn,k and
Dn,n−k are duals), whereas it is easy to show that H(r/s) and H(r/r−s) are duals,
so that the dual of H(1/2) is the degree-(n− 1) hypersurface H(−1). Note also that
Dn is of degree 2(n− 1), whereas H(1/2) is of degree 2n−1. It is of interest to know
more about the varieties D(r/s)

n,k and their duals.

7. Appendix: The curves L(r/s)

In P2, many interesting curves appears as L(r/s), where L is a line. For example,
L(1/2) is the curve D2,1, a quadric tangent to the coordinate lines, L(3/2) ' D3

2,1 is
a nine cuspidal sextic, L(2/3) is a Zariski sextic with 4 nodes and 6 cusps, L(−1/2) '
D−1

2,1 is a three cuspidal quartic, L(−1) is a quadric passing through the intersection
points of the coordinate lines.

Proposition 7.1. If r, s ≥ 0 are coprime integers , then L(r/s) is an irreducible
curve of degree sr and genus (r − 1)(r − 2)/2, with 3r points of type xr = ys and
r2(s− 1)(s− 2)/2 nodes.

Proof. We begin by proving that the curves L(1/s) are nodal. For this, it suffices
to show that the orbit of L under the action of the group Z/(s) ⊕ Z/(s) has only
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double points on P2\{xyz = 0}. If ω := e2πi/s, then the orbit of L consists of
the lines Lij := aωix + bωjy + cz = 0 for 1 ≤ i, j ≤ s. Suppose that no pairs of
lines among the lines Li,j , Lk,l, Lp,q meet on xyz = 0. Then they meet at a point
/∈ {xyz = 0} only if the determinant of the matrix

aωi bωj c
aωk bωl c
aωp bωq c

vanish. Since abc 6= 0, this is equivalent to the vanishing of

det
ωα − 1 ωβ − 1
ωγ − 1 ωθ − 1

where α := k − i, β := l − j, γ := p− i and θ := q − j. The integers α, β, γ, θ are
not multiples of s by hypothesis. Then vanishing of the determinant implies

(ωα − 1)(ωθ − 1)
(ωβ − 1)(ωγ − 1)

= 1⇒ (ωα/2 − ω−α/2)(ωθ/2 − ω−θ/2)
(ωβ/2 − ω−β/2)(ωγ/2 − ω−γ/2)

= ω(β+γ−α−θ)/2

Since the left-hand side of the latter expression is real, so must be the right-hand
side. Therefore

Im(eπi(β+γ−α−θ)/s) = 0⇒ s|β + γ − α− θ.
But this means that there is a pair of lines meeting at z = 0, contradiction. This
shows that the curves L(1/s) are nodal.

Since L(1/s) is a rational curve of degree s, it must have (s− 1)(s− 2)/2 nodes.
Since L(r/s) = φ−1

r (L(1/s)), the number of nodes of L(r/s) is r2(s − 1)(s − 2)/2.
Obviously, three flex points of L(1/s) are lifted as 3r cusps of type xr = ys. The
genus of L(r/s) can be calculated by the genus formula, or by noting that the curves
L(r/s) are coverings of L(1/s) branched at these three flex points, with the branching
index r.
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Birkhäuser, Boston, 1983, pp. 113–140.

11. Holzapfel R.P., Vladov, V.: Quadric-line configurations degenerating plane Picard-Einstein
metrics I-II. Proceedings to 60th birthday of H. Kurke, Math. Ges. Berlin, (2000).

12. Kaneko, J.: On the fundamental group of the complement to a maximal cuspidal plane curve
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