ON BRANCHED COVERINGS OF \mathbb{P}^{n} BY PRODUCTS OF DISCS

A. MUHAMMED ULUDAĞ
Galatasaray University, Department of Mathematics, 80840 Ortaköy, İstanbul, Turkey muludag@gsu.edu.tr

For any $n>1$, we construct examples of branched Galois coverings $M \rightarrow \mathbb{P}^{n}$ where M is one of $\left(\mathbb{P}^{1}\right)^{n}, \mathbb{C}^{n}$ and $\left(\mathbb{B}_{1}\right)^{n}$, where \mathbb{B}_{1} is the 1-ball. In terms of orbifolds, this amounts to giving examples of orbifolds over \mathbb{P}^{n} uniformized by M. We also discuss the related "orbifold braid groups".
Keywords: Branched covering, Complex orbifolds, Braid groups, Uniformization, Discriminant hypersurface.

Mathematics Subject Classification 2000: Primary 14J99; Secondary 20F36

1. Introduction

In contrast with the considerable literature on the orbifolds over \mathbb{P}^{2} uniformized by the 2-ball \mathbb{B}_{2} (see [17], [8], [10] [16] and references therein), not much is known about which orbifolds over \mathbb{P}^{n} are uniformized by the product of 1 -balls $\left(\mathbb{B}_{1}\right)^{n}$. The aim of the present article is to construct some orbifolds over the projective space \mathbb{P}^{n} uniformized either by $\left(\mathbb{P}^{1}\right)^{n}, \mathbb{C}^{n}$ or $\left(\mathbb{B}_{1}\right)^{n}$ and prove the following result.

Theorem 1.1. Let (n, b) be a pair of coprime integers with $n \geq 2$. There exists a Galois covering $\left(D_{n, 1}^{(b)}\right)^{n} \rightarrow \mathbb{P}^{n}$ of degree $n!b^{n^{2}-n}$ branched along an irreducible degree-2b(n-1) hypersurface $D_{n}^{(b)} \subset \mathbb{P}^{n}$ where $D_{n, 1}^{(b)} \subset D_{n}^{(b)}$ is a curve of euler number $e=b^{n-1}(n+1+b-n b)$.

For $b=1$, the hypersurface $D_{n}^{(1)}$ is the discriminant hypersurface, and $D_{n, 1}^{(1)} \simeq \mathbb{P}^{1}$ is a rational normal curve. In this case one obtains the well-known branched Galois covering $\left(\mathbb{P}^{1}\right)^{n} \rightarrow \mathbb{P}^{n}$. The subvarieties $D_{n}^{(b)}$ and $D_{n, 1}^{(b)}$ are the liftings respectively of $D_{n}^{(1)}$ and $D_{n, 1}^{(1)}$ by an abelian branched self-covering $\left[Z_{0}, \ldots, Z_{n}\right] \in \mathbb{P}^{n} \rightarrow$ $\left[Z_{0}^{b}, \ldots, Z_{n}^{b}\right] \in \mathbb{P}^{n}$. For $(n, b) \in\{(3,2),(2,3)\}$ one has $e\left(D_{n, 1}^{(b)}\right)=0$, and the universal covering of $\left(D_{n, 1}^{(b)}\right)^{n}$ is \mathbb{C}^{n}. The curve $D_{2}^{(3)}=D_{2,1}^{(3)}$ is a nine-cuspidal sextic, dual of a smooth cubic. For $b>1$ and $(n, b) \notin\{(3,2),(2,3)\}$ one has $e\left(D_{n, 1}^{(b)}\right)<0$, and the universal covering of $\left(D_{n, 1}^{(b)}\right)^{n}$ is $\left(\mathbb{B}_{1}\right)^{n}$.

In case $(n, b)=(2,3)$, the claim of Theorem 1.1 was proved in [12]. The case $n=2$ was established in [16]. In this case, $D_{2}^{(b)}$ coincides with $D_{n, 1}^{(b)}$, which is a curve of genus $\frac{1}{2}\left(b^{2}-3 b+2\right)$ with $3 b$ cusps of type $x^{2}=y^{b}$ and no other singularities, see Appendix for a proof. Irreducibility of $D_{n}^{(b)}$ is proved in Proposition 4.2. The remaining assertions of Theorem 1.1 are proved in Theorem 4.4. Our construction leads naturally to the definition of orbifold braid groups of the sphere \mathbb{P}^{1} with punctures, which we dicuss in Section 4. These groups were already introduced by Allcock [1] in the "braid-picture" setting for some basic cases.

2. Orbifolds

Let M be a connected complex manifold, $G \subset \operatorname{Aut}(M)$ a properly discontinuous subgroup and put $N:=M / G$. Then the projection $\phi: M \rightarrow N$ is a branched Galois covering endowing N with a map $\beta_{\phi}: N \rightarrow \mathbb{N}$ defined by $\beta_{\phi}(p):=\left|G_{q}\right|$ where q is a point in $\phi^{-1}(p)$ and G_{q} is the isotropy subgroup of G at q. In this setting, the pair $\left(N, \beta_{\phi}\right)$ is said to be uniformized by $\phi: M \rightarrow\left(N, \beta_{\phi}\right)$. An orbifold is a pair (N, β) of an irreducible normal analytic space N with a function $\beta: N \rightarrow \mathbb{N}$ such that the pair (N, β) is locally finitely uniformizable. A covering $\phi:\left(N^{\prime}, \beta^{\prime}\right) \rightarrow(N, \beta)$ of orbifolds is a branched Galois covering $N^{\prime} \rightarrow N$ with $\beta^{\prime}=(\beta \circ \phi) / \beta_{\phi} \circ \phi$. Note that the restriction $\left(N^{\prime}, 1\right) \rightarrow\left(N, \beta_{\phi}\right)$ is a uniformization of $\left(N, \beta_{\phi}\right)$. Conversely, let (N, β) and (N, γ) be two orbifolds with $\gamma \mid \beta$, and let $\phi:\left(N^{\prime}, 1\right) \rightarrow(N, \gamma)$ be a uniformization of (N, γ), e.g. $\beta_{\phi}=\gamma$. Then $\phi:\left(N^{\prime}, \beta^{\prime}\right) \rightarrow(N, \beta)$ is a covering, where $\beta^{\prime}:=\beta \circ \phi / \gamma \circ \phi$. The orbifold $\left(N^{\prime}, \beta^{\prime}\right)$ is called the lifting of (N, β) to the uniformization N^{\prime} of (N, γ).

Let (N, b) be an orbifold, $B_{\beta}:=\operatorname{supp}(\beta-1)$ and let B_{1}, \ldots, B_{n} be the irreducible components of B_{β}. Then β is constant on $B_{i} \backslash \operatorname{sing}\left(B_{\beta}\right)$; so let b_{i} be this number. The orbifold fundamental group $\pi_{1}^{\text {orb }}(N, \beta)$ of (N, β) is the group defined by $\pi_{1}^{o r b}(N, \beta):=\pi_{1}\left(N \backslash B_{\beta}\right) /\left\langle\left\langle\mu_{1}^{b_{1}}, \ldots, \mu_{n}^{b_{n}}\right\rangle\right\rangle$ where $\mu_{i}^{b_{i}}$ is a meridian of B_{i} and $\langle\rangle\rangle$ denotes the normal closure. An orbifold (N, β) is said to be smooth if N is smooth. In case (N, β) is a smooth orbifold the map β is determined by the numbers b_{i}; in fact $\beta(p)$ is the order of the local orbifold fundamental group at p. Since the orbifolds to be considered in this article are exclusively smooth, we shall adopt the convention that such orbifolds are defined to be the pairs (N, B) where $B:=b_{1} B_{1}+\cdots+b_{n} B_{n}$ is a divisor with $b_{i} \geq 1$. We shall also allow b_{i} to take infinite values, meaning that the corresponding hypersurface B_{i} is removed from the base space N. If $\mathcal{O}:=(N, B)$ is an orbifold and C a hypersurface in N, then we shall use the notation $(\mathcal{O}, b C)$ to denote the orbifold $(N, B+b C)$.

3. Discriminants

For a recent treatment of discriminant varieties, see Katzs' article [13] or [9]. Let $n \geq 1$ be an integer and consider the action of the symmetric group Σ_{n} on $\left(\mathbb{P}^{1}\right)^{n}$. Let $p_{i}=\left[u_{i}, v_{i}\right] \in \mathbb{P}^{1}$ and let $\sigma_{j}(j \in[0, n])$ be the homogeneous elementary symmetric polynomial

$$
\sigma_{j}\left(p_{1}, \ldots, p_{n}\right):=\sum_{A \subset[1, n],|A|=j}\left(\prod_{\alpha \in A} x_{\alpha} \prod_{\beta \in[1, n] \backslash A} y_{\beta}\right)
$$

It is well known that the map $\phi_{n}:\left(\mathbb{P}^{1}\right)^{n} \rightarrow \mathbb{P}^{n}$ given by

$$
\phi_{n}:\left(p_{1}, \ldots, p_{n}\right):=\left[\sigma_{0}\left(p_{1}, \ldots, p_{n}\right): \cdots: \sigma_{n}\left(p_{1}, \ldots, p_{n}\right)\right]
$$

is Σ_{n} - invariant and gives an isomorphism $\left(\mathbb{P}^{1}\right)^{n} / \Sigma_{n} \simeq \mathbb{P}^{n}$.
Let $\pi_{i}:\left(\mathbb{P}^{1}\right)^{n} \rightarrow \mathbb{P}^{1}$ be the $i t h$ projection map, q a point in \mathbb{P}^{1}, and put $F_{q}^{i}:=$ $\pi_{i}^{-1}(q)$. Let $\tau_{i j} \in \Sigma_{n}$ be the transposition exchanging the i th and j th coordinates of $\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}$. Since $\tau_{1 i} F_{q}^{1}=F_{q}^{i}$, the hypersurface $H_{q}:=\phi_{n}\left(F_{q}^{i}\right)$ does not depend on i.

Lemma 3.1. For any $q \in \mathbb{P}^{1}$, the hypersurface H_{q} is a hyperplane in \mathbb{P}^{n}. For any set $\left\{q_{0}, \ldots, q_{m}\right\} \subset \mathbb{P}^{1}$ of distinct points, the hyperplanes $H_{q_{0}}, \ldots, H_{q_{m}}$ are in general position.

Proof. Suppose without loss of generality that $i=1$. Then H_{q} is parametrized as $H_{q}=\left[X_{0}: X_{1}: \cdots: X_{n}\right] \in \mathbb{P}^{n}$, where $X_{j}=\sigma_{j}\left(q, p_{2}, \ldots, p_{n}\right)$ and $p_{i} \in \mathbb{P}^{1}$ $(i \in[2, n])$. If $q=\left[u_{1}: v_{1}\right]=[x: y]$ and $p_{i}=\left[u_{i}: v_{i}\right](i \in[2, n])$ then one has the identity

$$
\begin{equation*}
P(A, B):=\sum_{j \in[0, n]}(-1)^{n-j} \sigma_{j}\left(q, p_{2}, \ldots, p_{n}\right) A^{j} B^{n-j}=\prod_{i \in[1, n]}\left(u_{i} A-v_{i} B\right) \tag{3.1}
\end{equation*}
$$

Substitute $[A: B]=[y: x]$ in (3.1). Since the right-hand side of (3.1) vanish at the point $\left(q, p_{2}, \ldots, p_{n}\right)$, so does the middle term, and thus H_{q} satisfies the linear equation

$$
\begin{equation*}
\sum_{j \in[0, n]}(-1)^{n-j} y^{j} x^{n-j} X_{j}=0 \tag{3.2}
\end{equation*}
$$

Let $\left\{q_{i}=\left[x_{i}: y_{i}\right]: i \in[0, n]\right\}$ be a set of $n+1$ points. Since the determinant of the projective Vandermonde matrix $\mathcal{V} a n\left(q_{0}, \ldots, q_{n}\right)$ given by

$$
\mathcal{V}^{n_{i, j}}\left(q_{0}, \ldots, q_{n}\right):=(-1)^{n-j} y_{i}^{j} x_{i}^{n-j} \quad i, j \in[0, n]
$$

vanish if and only if $q_{i}=q_{j}$ for some $i, j \in[0, n]$, the hyperplanes $H_{q_{0}}, \ldots, H_{q_{n}}$ are always in general position.

The hypersurface $\Delta_{n}:=\left\{\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}: p_{i}=p_{j}\right.$ for some $1 \leq i \neq j \leq$ $n\}$ of $\left(\mathbb{P}^{1}\right)^{n}$ consists of points fixed by an element of Σ_{n}, so that the covering ϕ_{n} is branched along the hypersurface $D_{n}:=\phi\left(\Delta_{n}\right)$, which is called the discriminant hypersurface since it is defined by the discriminant of the homogeneous polynomial $P(A, B)$. In terms of orbifolds, this means that there is an orbifold covering

$$
\begin{equation*}
\phi_{n}:\left(\left(\mathbb{P}^{1}\right)^{n}, a \Delta_{n}\right) \rightarrow\left(\mathbb{P}^{n}, 2 a D_{n}\right) \tag{3.3}
\end{equation*}
$$

Let $\left\{q_{0}, \ldots, q_{m}\right\} \subset \mathbb{P}^{1}$ be $m+1$ distinct points, b_{0}, \ldots, b_{m} numbers in $\mathbb{N} \cup\{\infty\}$ and consider the orbifold

$$
\mathcal{F}\left(b_{0}, \ldots, b_{m}\right):=\left(\mathbb{P}^{1}, b_{0} q_{0}+\cdots+b_{m} q_{m}\right)
$$

Let $n \geq 1$ be an integer and consider the orbifold $\mathcal{F}\left(b_{0}, \ldots, b_{m}\right)^{n}$. Let \mathcal{G}_{n} be the orbifold

$$
\mathcal{G}_{n}\left(a ; b_{0}, \ldots, b_{m}\right):=\left(\mathcal{F}\left(b_{0}, \ldots, b_{m}\right)^{n}, a \Delta_{n}\right)
$$

and define the orbifold $\mathcal{H}_{n}\left(a ; b_{0}, \ldots, b_{m}\right)$ as

$$
\mathcal{H}_{n}\left(a ; b_{0}, \ldots, b_{m}\right):=\left(\mathbb{P}^{n}, a D_{n}+b_{0} H_{q_{0}}+\cdots+b_{m} H_{q_{m}}\right)
$$

By the covering in (3.3) and Lemma 3.1 one has the fact
Lemma 3.2. There is an orbifold covering of degree n !

$$
\phi: \mathcal{G}_{n}\left(a ; b_{0}, \ldots, b_{m}\right) \rightarrow \mathcal{H}_{n}\left(2 a ; b_{0}, \ldots, b_{m}\right)
$$

In particular, for $a=1$ one has the orbifold covering

$$
\phi: \mathcal{F}\left(b_{0}, \ldots, b_{m}\right)^{n} \simeq \mathcal{G}_{n}\left(1 ; b_{0}, \ldots, b_{m}\right) \rightarrow \mathcal{H}_{n}\left(2 ; b_{0}, \ldots, b_{m}\right)
$$

The following facts are well known (see [15]):

Theorem 3.3. [Bundgaard-Nielsen,Fox] The orbifold $\mathcal{F}\left(b_{0}, \ldots, b_{m}\right)$ admits a finite uniformization if $n>1, b_{i}<\infty(1 \leq i \leq m)$ and if $n=2$, then $b:=b_{0}=b_{1}$. Let $R \rightarrow \mathcal{F}\left(b_{0}, \ldots, b_{m}\right)$ be a finite uniformization.
(i) $R \simeq \mathbb{P}^{1}$ if $n=2, b_{0}=b_{1}<\infty$ or $n=3, b_{0}^{-1}+b_{1}^{-1}+b_{2}^{-1}>1$. In this case, \mathbb{P}^{1} is also the universal uniformization. The groups $\pi_{1}^{\text {orb }}(\mathcal{F}(b, b))$ and $\pi_{1}^{\text {orb }}\left(\mathcal{F}\left(b_{0}, b_{1}, b_{2}\right)\right)$ are finite of orders b and $2\left[b_{0}^{-1}+b_{1}^{-1}+b_{2}^{-1}-1\right]^{-1}$ respectively.
(ii) R is of genus 1 if $n=3, b_{0}^{-1}+b_{1}^{-1}+b_{2}^{-1}=1$ or $n=4, b_{0}=b_{1}=b_{2}=b_{3}=2$. Hence, \mathbb{C} is the universal uniformization of these orbifolds. Moreover, $\mathcal{F}(\infty, \infty)$ and $\mathcal{F}(2,2, \infty)$ are uniformized by \mathbb{C}. The corresponding orbifold fundamental groups are infinite solvable.
(iii) R is of genus >1 otherwise, and the universal uniformization is $\left(\mathbb{B}_{1}\right)^{n}$, where \mathbb{B}_{1} is the unit disc in \mathbb{C}. The corresponding orbifold fundamental groups are big (i.e. they contain non-abelian free subgroups).

In virtue of the covering $\phi: \mathcal{F}\left(b_{0}, \ldots, b_{m}\right)^{n} \rightarrow \mathcal{H}_{n}\left(2 ; b_{0}, \ldots, b_{m}\right)$ one has the result
Corollary 3.4. Let $n>1, b_{i}<\infty(1 \leq i \leq m)$ and if $n=2$, then $b_{0}=b_{1}$. Then the orbifold $\mathcal{H}_{n}\left(2 ; b_{0}, \ldots, b_{m}\right)$ admits a finite uniformization by R^{n}, where R is the uniformization of $\mathcal{F}\left(b_{0}, \ldots, b_{m}\right)$ given in Theorem 3.3. The orbifolds $\mathcal{H}(2 ; \infty, \infty)$ and $\mathcal{H}(2 ; 2,2, \infty)$ are uniformized by \mathbb{C}^{n}. Moreover, $\pi_{1}^{\text {orb }}(\mathcal{H}(2 ; b, b))$ is a finite group of order $n!b^{n}$ and $\pi_{1}^{\text {orb }}\left(\mathcal{H}\left(2 ; b_{0}, b_{1}, b_{2}\right)\right)$ is a finite group of order $n!2^{n}\left[b_{0}+b_{1}+b_{2}-\right.$ $1]^{-n}$ if $b_{0}^{-1}+b_{1}^{-1}+b_{2}^{-1}>1$.

4. Another covering of $\mathcal{H}\left(a ; b_{0}, \ldots, b_{m}\right)$

Let $b \in \mathbb{N}$ be an integer and consider the orbifold $\mathcal{K}_{n}(b):=\left(\mathbb{P}^{n}, b H_{q_{0}}+\cdots+b H_{q_{n}}\right)$. By Lemma 3.1, the hyperplanes $H_{q_{0}}, \ldots, H_{q_{n}}$ are in general position. It is well known that the universal uniformization of this orbifold is \mathbb{P}^{n}. Applying a projective transformation one may assume that the hyperplanes $H_{q_{i}}$ are given by the equations $Y_{i}=0$ where $\left[Y_{0}: \cdots: Y_{n}\right] \in \mathbb{P}^{n}$. In this case the uniformization $\psi_{b}: \mathbb{P}^{n} \rightarrow \mathcal{K}_{n}(b)$ is nothing but the map

$$
\left[Y_{0}: \cdots: Y_{n}\right]=\psi_{b}\left(\left[Z_{0}: \cdots: Z_{n}\right]\right)=\left[Z_{0}^{b}: \cdots: Z_{n}^{b}\right]
$$

It is clear that the orbifold $\mathcal{H}_{n}\left(a ; b b_{0}, \ldots, b b_{n}, b_{n+1}, \ldots, b_{m}\right)$ lifts to the uniformization of $\mathcal{K}_{n}(b)$. Put $D_{n}^{(b)}:=\psi_{b}^{-1}\left(D_{n}\right)$, denote $M_{q_{i}}:=\psi^{-1}\left(H_{q_{i}}\right)$ and define the orbifold

$$
\mathcal{L}_{n}^{(b)}\left(a ; b_{0}, \ldots, b_{m}\right):=\left(\mathbb{P}^{n}, a D_{n}^{(b)}+b_{0} M_{q_{0}}+\ldots b_{n} M_{q_{m}}\right)
$$

to be this lifting. In case $n=2$ these liftings were studied in [16]. For $n>2$ the following proposition is valid:
Proposition 4.1. For $n>2$ and $b \geq 2$ the orbifolds $\mathcal{L}_{n}^{(b)}\left(2 ; b_{0}, \ldots, b_{m}\right)$ are uniformized by $\left(\mathbb{B}_{1}\right)^{n}$ except the orbifold $\mathcal{L}_{3}^{(2)}(2)$, which is uniformized by \mathbb{C}^{3}.

Proof. There is an orbifold covering $\mathcal{L}_{n}^{(b)}\left(2 ; b_{0}, \ldots, b_{m}\right) \longrightarrow \mathcal{H}_{n}\left(a ; b b_{0}, \ldots, b b_{n}\right)$. The claim follows, since by Corollary 3.4 the latter orbifold is uniformized by \mathbb{C}^{3} if $b=2, n=3, b_{0}=\cdots=b_{n}=1$ and by $\left(\mathbb{B}_{1}\right)^{n}$ otherwise.

For $k \in[1, n]$, define the k-dimensional subvarietiy $\Delta_{n, k}$ of Δ_{n} by

$$
\Delta_{n, k}:=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}: p_{k}=p_{k+1}=\cdots=p_{n}\right\} \simeq\left(\mathbb{P}^{1}\right)^{k}
$$

Thus, $\Delta_{n, n-1}$ is an irreducible component of Δ_{n} and $\Delta_{n, 1}$ is the diagonal in $\left(\mathbb{P}^{1}\right)^{n}$. The subgroup of Σ_{n} acting on $\Delta_{n, k}$ is a symmetric group Σ_{k-1}, so that $D_{n, k}:=$ $\mathbb{P}^{1} \times \mathbb{P}^{k-1}$. These varieties admits the parametrizations

$$
\begin{equation*}
D_{n, k}:\left[X_{0}: \cdots: X_{n}\right] \in \mathbb{P}^{n} \quad X_{j}=\sigma_{j}\left(p_{1}, \ldots, p_{n}\right), \quad p_{k}=\cdots=p_{n} \tag{4.1}
\end{equation*}
$$

In particular, the curve $D_{n, 1}$ is a rational normal curve parametrized as

$$
\left[\binom{n}{0} v^{n},\binom{n}{1} u v^{n-1}, \ldots,\binom{n}{n} u^{n}\right] \quad\left([u: v] \in \mathbb{P}^{1}\right)
$$

Applying the projective transformation $\mathcal{V} a n\left(q_{0}, \ldots, q_{n}\right)$ to the parametrizations (4.1) gives the parametrization $D_{n, k}:\left[Y_{0}: \cdots: Y_{n}\right] \in \mathbb{P}^{n}$, where

$$
\begin{equation*}
\sum_{j \in[0, n]}(-1)^{n-j} y_{i}^{j} x_{i}^{n-j} \sigma_{j}\left(p_{1}, \ldots, p_{n}\right), \quad p_{k}=\cdots=p_{n} \tag{4.2}
\end{equation*}
$$

Let $p_{i}=\left[u_{i}: v_{i}\right]$ and let $[u: v]=\left[u_{k}: v_{k}\right]=\cdots=\left[u_{n}: v_{n}\right]$. In virtue of the identity (3.1) one has the parametrizations $D_{n, k}:\left[Y_{0}: \cdots: Y_{n}\right] \in \mathbb{P}^{n}$ where

$$
\begin{equation*}
Y_{j}=\left(u y_{j}-v x_{j}\right)^{n-k+1} \prod_{i \in[1, k-1]}\left(u_{i} y_{j}-v_{i} x_{j}\right) \tag{4.3}
\end{equation*}
$$

In particular, the curve $D_{n, 1}$ is parametrized as

$$
\begin{equation*}
D_{n, 1}:\left[\left(u y_{0}-v x_{0}\right)^{n}: \cdots:\left(u y_{n}-v x_{n}\right)^{n}\right] \tag{4.4}
\end{equation*}
$$

The varieties $D_{n, k}^{(b)}$ are parametrized as

$$
\begin{equation*}
D_{n, k}^{(b)}:\left[Z_{0}: \cdots: Z_{n}\right] \quad Z_{j}^{b}=\left(u y_{j}-v x_{j}\right)^{n-k+1} \prod_{i \in[1, k-1]}\left(u_{i} y_{j}-v_{i} x_{j}\right) \tag{4.5}
\end{equation*}
$$

Note that the parametrizations (4.3) and (4.5) are not generically one-to-one unless $k \leq 2$, since (4.3) is a map $\left(\mathbb{P}^{1}\right)^{k} \rightarrow D_{n, k}$.
Proposition 4.2. (i) The curve $D_{n, 1}^{(b)}$ is irreducible if and only if $\operatorname{gcd}(n, b)=1$. Hence, the subvarieties $D_{n, k}^{(b)}$ are irreducible if $\operatorname{gcd}(n, b)=1$.
Definition 4.3. Let $t \in \mathbb{Z}$ and ψ_{t} be the map

$$
\psi_{t}:\left[Z_{0}: \cdots: Z_{n}\right] \in \mathbb{P}^{n} \rightarrow\left[Z_{0}^{t}: \ldots Z_{n}^{t}\right] \in \mathbb{P}^{n}
$$

Let $V \subset \mathbb{P}^{n}$ be a subvariety and $r, s \in \mathbb{Z}$ such that $s>1$. Then $V^{(r / s)}$ is the subvariety of \mathbb{P}^{n} defined as

$$
V^{(r / s)}:=\left(\psi_{r}^{-1} \mathrm{o} \psi_{s}\right)(V)
$$

In particular, $V^{(r / r)}$ is the orbit of V under the $(\mathbb{Z} /(r))^{n}$-action on \mathbb{P}^{n}.
Proof of the Proposition. The parametrization (4.4) shows that $D_{n, 1} \simeq L^{1 / n}$, where L is a line $\subset \mathbb{P}^{n}$ in general position with respect to ψ_{n}, in other words L intersects the hyperplane arrangement $Z_{0} \ldots Z_{n}=0$ transversally at smooth points. Hence there is a surjection of fundamental groups

$$
\begin{equation*}
\pi_{1}\left(L \backslash\left\{\tilde{q}_{0}, \ldots, \tilde{q}_{n}\right\}\right) \rightarrow \pi_{1}\left(\mathbb{P}^{n} \backslash\left\{Z_{0}, \ldots, Z_{n}\right\}\right) \tag{4.6}
\end{equation*}
$$

where $\tilde{q}_{i}:=Z_{i} \cap L$. Let $\mathcal{M}(b), \mathcal{K}(b)$ be the orbifolds

$$
\mathcal{M}(b):=\left(L, b \tilde{q}_{0}+\cdots+b \tilde{q}_{n}\right), \quad \mathcal{K}(b):=\left(\mathbb{P}^{n}, b Z_{0}+\cdots+b Z_{n}\right)
$$

Then (4.6) induce a surjection of orbifold fundamental groups

$$
\pi_{1}^{o r b}(\mathcal{M}(b)) \rightarrow \pi_{1}^{o r b}(\mathcal{K}(b))
$$

(one may say: $\mathcal{M}(b)$ is a sub-orbifold of $\mathcal{K}(b))$. This shows that the curve $L^{(b)}$ is irreducible and is a uniformization of $\mathcal{M}(b)$. Since $\operatorname{gcd}(n, b)=1$, one has $D_{n, 1}^{(b)}=$ $L^{(b / n)}$, showing that $D_{n, 1}^{(b)}$ is irreducible. Note that $D_{n, 1}^{(b)}$ is the maximal abelian orbifold covering of $\mathcal{M}(b)$. Irreducibility of $D_{n, k}^{(b)}$ follows since $D_{n, 1}^{(b)}$ is a subvariety of $D_{n, k}^{(b)}$.
Let $\mathcal{O}(b)$ be the orbifold $\mathcal{O}(b):=\left(D_{n, 1}, b \bar{q}_{0}+\cdots+b \bar{q}_{n}\right)$, where $\bar{q}_{i}:=Y_{i} \cap D_{n, 1}$. The orbifold $\mathcal{O}(b)$ is identified via the covering ϕ with the orbifold $\mathcal{P}(b):=\left(\Delta_{n, 1}, b q_{0}^{\prime}+\right.$ $\left.\cdots+b q_{n}^{\prime}\right)$, where this time $q_{i}^{\prime}:=\phi^{-1}\left(\bar{q}_{i}\right)$. In turn, $\mathcal{O}(b)$ is identified with the orbifold $\mathcal{F}(b, \ldots, b)$ via the coordinate projection. By the proof of Proposition 4.2, these orbifolds are identified with the orbifold $\mathcal{M}(b)$ in case $(n, b)=1$.

Theorem 4.4. Let $\operatorname{gcd}(n, b)=1$. Then there is a finite uniformization ξ_{n} : $\left(D_{n, 1}^{(b)}\right)^{n} \longrightarrow \mathcal{L}_{n}^{(b)}(2)$ which is of degree $n!b^{n^{2}-n}$.

Proof. One has the diagram

where $\zeta_{b}:\left(D_{n, 1}^{(b)}\right)^{n} \rightarrow \mathcal{O}(b)^{n}$ is the maximal abelian orbifold covering and ξ_{n} is to be shown to be a branched Galois covering of degree $n!b^{n^{2}-n}$. It suffices to show that the group $H:=\left(\phi_{n} \circ \zeta_{b}\right)_{*} \pi_{1}\left(\left(D_{n, 1}^{(b)}\right)^{n}\right)$ is a normal subgroup of $K:=$ $\left(\psi_{b}\right)_{*} \pi_{1}^{o r b}\left(\mathcal{L}_{n}^{(b)}(2)\right)$. Let σ be a meridian of D_{n}. Then since $\pi_{1}^{o r b}\left(\mathcal{H}_{n}(2, b, \ldots, b)\right) /\langle\langle\sigma\rangle \simeq$ $\pi_{1}^{\text {orb }}\left(\mathcal{K}_{n}(b)\right) \simeq(\mathbb{Z} /(b))^{n}$ is the Galois group of ψ_{b}, the group K is the normal subgroup of $\pi_{1}^{\text {orb }}\left(\mathcal{H}_{n}(2, b, \ldots, b)\right)$ generated by σ, i.e. $K \simeq\langle\langle\sigma\rangle\rangle$. The group $\left.\pi_{1}^{o r b}\left(\mathcal{H}_{n}(2, b, \ldots, b)\right)\right) / K$ being abelian, one has $\left[\tau_{i}, \tau_{j}\right] \in K$ for $i, j \in[0, n]$. On the other hand one has

$$
\pi_{1}^{o r b}\left(\mathcal{H}_{n}(2 ; b, \ldots, b)\right) /\left\langle\left\langle\tau_{0}, \ldots, \tau_{n}\right\rangle\right\rangle \simeq \pi_{1}^{o r b}\left(\mathcal{H}_{n}(2)\right) \simeq \Sigma_{n}
$$

Since Σ_{n} is the Galois group of ϕ_{n}, one has $\phi_{*} \mathcal{O}(b)^{n} \simeq\left\langle\left\langle\tau_{0}, \ldots, \tau_{n}\right\rangle\right\rangle$. Since ζ_{n} is the maximal abelian orbifold covering, one has $H \simeq\left\langle\left\langle\left[\tau_{i}, \tau_{j}\right]\right\rangle\right\rangle$. This shows that H is a normal subgroup of K. Since $\operatorname{deg}\left(\zeta_{b}\right)=b^{n^{2}}, \operatorname{deg}\left(\phi_{n}\right)=n$! and $\operatorname{deg}\left(\psi_{b}\right)=b^{n}$, one has

$$
\operatorname{deg}\left(\xi_{n}\right)=\frac{\operatorname{deg}\left(\zeta_{b}\right) \operatorname{deg}\left(\phi_{n}\right)}{\operatorname{deg}\left(\psi_{b}\right)}=n!b^{n^{2}-n}
$$

The euler number of $D_{n, 1}^{(b)}$ is easily computed by the Riemann-Hurwitz formula.

5. Braid Groups

Following and generalizing Allcock [1], let us call the groups

$$
\mathbf{P}_{n}\left(a ; b_{0}, \ldots, b_{m}\right):=\pi_{1}^{o r b}\left(\mathcal{G}_{n}\left(a ; b_{0}, \ldots, b_{m}\right)\right)
$$

the pure braid groups of $\mathcal{F}\left(b_{0}, \ldots, b_{m}\right)$ on n strands, and the groups

$$
\mathbf{B}_{n}\left(a ; b_{0}, \ldots, b_{m}\right):=\pi_{1}^{o r b}\left(\mathcal{H}_{n}\left(a ; b_{0}, \ldots, b_{m}\right)\right)
$$

the braid groups of $\mathcal{F}\left(b_{0}, \ldots, b_{m}\right)$ on n strands. Obviously, the group $\mathbf{B}_{n}\left(a ; b_{0}, \ldots, b_{m}\right)$ is a quotient of $\mathbf{B}_{n}\left(a^{\prime} ; b_{0}^{\prime}, \ldots, b_{m}^{\prime}\right)$ provided $a \mid a^{\prime}$ and $b_{i} \mid b_{i}^{\prime}$ for $0 \leq i \leq n$. The group $\mathbf{B}_{n}\left(a ; b_{0}, \ldots, b_{m}\right)$ is a subgroup of $\mathbf{B}_{n+k}\left(a ; b_{k}, \ldots, b_{m}\right)$ in case the equality $a=b_{0}=\cdots=b_{k-1}$ holds. The group $\mathbf{B}_{n}\left(2 a ; b_{0}, \ldots, b_{m}\right)$ is a normal subgroup of index n ! in the group $\mathbf{P}_{n}\left(a ; b_{0}, \ldots, b_{m}\right)$. The group $\mathbf{B}_{n}\left(a ; b_{0}, \ldots, b_{m}\right)$ admits the presentation (see [2] for the case $n=2$ and [4], [5], [14] for the general case)
(1) generators: $\sigma_{1}, \ldots, \sigma_{n-1}, \tau_{0}, \ldots, \tau_{m}$
(2) braid relations: $\left[\sigma_{i}, \sigma_{j}\right]=1,|i-j|>1$, $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, 1 \leq i \leq n-1$
(3) mixed relations $\left(\sigma_{1} \tau_{i}\right)^{2}=\left(\tau_{i} \sigma_{1}\right)^{2}, 1 \leq i \leq m$,
$\left[\tau_{i}, \sigma_{j}\right]=1, j \neq 1,1 \leq i \leq m$ $\left[\sigma_{1} \tau_{i} \sigma_{1}^{-1}, \tau_{j}\right]=1,1 \leq i<j \leq m$
(4) projective relation ${ }^{1} \sigma_{1} \sigma_{2} \ldots \sigma_{n-1} \tau_{0} \cdots \tau_{m} \sigma_{n-1} \ldots \sigma_{2} \sigma_{1}=1$
(5) orbifold relations $\tau_{0}^{b_{0}}=\cdots=\tau_{m}^{b_{m}}=\sigma_{1}^{a}=1$

In particular, the group $\mathbf{B}_{n}(\infty ; \infty)$ is the usual braid group of \mathbb{C} introduced by Artin [3]. The group $\mathbf{B}_{n}(\infty) \simeq \mathbf{B}_{n}(\infty ; 1)$ is the braid group of the sphere, see [18]. On the other hand, one has

$$
\mathbf{B}_{1}\left(b_{0}, \ldots, b_{m}\right) \simeq\left\langle\tau_{0}, \ldots, \tau_{m} \mid \tau_{0}^{b_{0}}=\ldots=\tau_{m}^{b_{m}}=\tau_{0} \cdots \tau_{m}=1\right\rangle
$$

In case $n=2$, the discriminant hypersurface $D_{2}^{(1)}$ is a smooth quadric, and the lines $H_{q_{i}}$ are tangent to $D_{2}^{(1)}$ (see [16]). In particular, the groups $\mathbf{B}_{2}(a ; b)$ are abelian. The group $\mathbf{B}_{2}(a ; b, c)$ admits the presentation

$$
\begin{equation*}
\mathbf{B}_{2}(a ; b, c) \simeq\left\langle\tau, \sigma \mid(\tau \sigma)^{2}=(\sigma \tau)^{2}, \quad \tau^{b}=\left(\tau \sigma^{2}\right)^{c}=\sigma^{a}=1\right\rangle \tag{5.1}
\end{equation*}
$$

Proposition 5.1. For $b, c<\infty$, the group $\mathbf{B}_{2}(a ; b, c)$ is a finite central extension of the triangle group $T_{2, a, d}:\left\langle\tau, \sigma \mid(\tau \sigma)^{2}=\tau^{d}=\sigma^{a}=1\right\rangle$, where $d:=\operatorname{gcd}(b, c)$. Hence, $\mathbf{B}_{2}(a ; b, c)$ is finite $1 / a+1 / b>1 / 2$, infinite almost solvable if $1 / d+1 / a=1 / 2$, and big otherwise (i.e. it contains non-abelian free subgroups). The group $\mathbf{B}_{2}(a ; b, b)$ is of order $2 b\left[a^{-1}+b^{-1}-2^{-1}\right]^{-1}$ if $1 / a+1 / b>1 / 2$.

Proof. Note that $\delta:=(\tau \sigma)^{2}$ is central in $\mathbf{B}_{2}(a ; b, c)$, so that $\left(\tau \sigma^{2}\right)^{c}=1 \Leftrightarrow$ $(\sigma \tau \sigma)^{c}=1 \Leftrightarrow\left(\tau^{-1} \delta\right)^{c}=\tau^{-c} \delta^{c}=1$. The element δ is of finite order. Adding the relation $\delta=1$ to the presentation (5.1) yields the triangle group $T_{2, a, d}$, which is finite if $1 / a+1 / d>1 / 2$, infinite solvable if $1 / a+1 / d=1 / 2$, and big otherwise. In case $c=b$, one has $d=b$ and the triangle group is of order $2\left[a^{-1}+b^{-1}-2^{-1}\right]^{-1}$ if $1 / a+1 / b>1 / 2$, which shows that $\mathbf{B}(a ; b, b)$ is of order $2 b\left[a^{-1}+b^{-1}-2^{-1}\right]^{-1}$.

[^0]Let R^{n} be a uniformization of the orbifold $\left(\mathcal{F}\left(b_{0}, \ldots, b_{m}\right)\right)^{n}$. If $k \geq m$ then any orbifold $\mathcal{G}_{n}\left(2 a ; c_{0} b_{0}, \ldots c_{m} b_{m}, c_{m+1}, \ldots, c_{k}\right)$ can be lifted to R^{n}. In case $R \simeq \mathbb{P}^{1}$ or $R \simeq \mathbb{C}$ one obtains some arrangements associated to reflection groups as follows. Suppose that $q_{0}=[0: 1]$ and $q_{1}=[1: 0]$. Lifting $\mathcal{G}_{n}(2 a ; c b, \infty)$ to the uniformization of $\mathcal{G}_{n}(2 ; b, b)$ yields the orbifold $\left(\mathbb{C}^{n}, a \Delta_{n}^{(b)}+c F\right)$ where $F:=\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{n}\right.$: $\left.X_{1} \cdots X_{n}=0\right\}$ and $\Delta_{n}^{(b)}$ is the lifting of the superdiagonal

$$
\Delta_{n}^{(b)}:=\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}^{n}: \psi_{b}\left(p_{i}\right)=\psi_{b}\left(p_{j}\right) \text { for some } 1 \leq i \neq j \leq n\right\}
$$

with $\psi_{b}(X)=X^{b}$ if $b<\infty$ and $\psi_{\infty}(X)=\exp (2 \pi \mathrm{i} X)$. Setting $b=2$ in this construction identifies the group $\mathbf{B}_{n}(\infty ; \infty, \infty)$ with the Artin group corresponding to the diagrams B_{n} (see [1]).

The groups $\mathbf{B}_{2}(a ; b, c, d)$ admits the simplified presentation (see [16])

$$
\mathbf{B}_{2}(a ; b, c, d) \simeq\left\langle\tau, \rho, \sigma \left\lvert\, \begin{array}{l}
(\tau \sigma)^{2}=(\sigma \tau)^{2},(\rho \sigma)^{2}=(\sigma \rho)^{2},[\rho, \tau]=1, \\
\tau^{b}=(\sigma \tau \sigma \rho)^{d}=\rho^{c}=\sigma^{a}=1
\end{array}\right.\right\rangle
$$

We summarized the known information about the orbifolds \mathcal{H} and the corresponding braid groups in Table 1 below. Suppose that if $(n, m)=(2,1)$ then $b_{0}=b_{1}$. We believe that the group $\mathbf{B}_{n}\left(a ; b_{0}, \ldots, b_{m}\right)$ is finite if

$$
\frac{2(n-1)}{a}+\sum_{i \in[0, m]} \frac{1}{b_{i}}>n+m-2,
$$

at most infinite solvable if the equality holds, and big otherwise.

6. Remarks

Consider the restriction of $D_{n, k}$ to the $n-k+1$ dimensional linear subspace $M_{n-k+1}:=\left\{\left[Y_{0}: \cdots: Y_{n}\right] \in \mathbb{P}^{n} \mid Y_{n-k+2}=\cdots=Y_{n}=0\right\}$ of \mathbb{P}^{n}. Setting $[u: v]=$ $\left[x_{n}: y_{n}\right]$ and $\left[u_{i}: v_{i}\right]=\left[x_{n-i}: y_{n-i}\right]$ for $i \in[1, k-2]$ in (4.3) we see that $D_{n, k}$ has a 1-dimensional linear component L in $M_{n-k+1} \simeq \mathbb{P}^{n-k+1}$, parametrized as $\left[Y_{0}: \cdots: Y_{n-k+1}\right] \in M_{n-k+1}$ where

$$
Y_{l}=\left(u_{n} y_{l}-v_{n} x_{l}\right)\left(x_{n} y_{l}-y_{n} x_{l}\right)^{n-k+1} \prod_{i \in[2, k-1]}\left(x_{n-i} y_{l}-y_{n-i} x_{l}\right)
$$

for $l \in[0, n-k+1]$ and $\left[u_{n}: v_{n}\right] \in \mathbb{P}^{1}$. It is readily seen that there are $k-1$ such lines. In case $\left[u_{i}: v_{i}\right]=0$ for $i \in[1, k-1]$, one has the curve C in $D_{n, k} \cap M_{n-k+1}$ parametrized as $\left[Y_{0}: \cdots: Y_{n-k+1}\right] \in M_{n-k+1}$ where

$$
Y_{l}=\left(u y_{l}-v x_{l}\right)^{n-k+1} \prod_{i \in[1, k-1]}\left(x_{n-i} y_{l}-y_{n-i} x_{l}\right)
$$

for $l \in[0, n-k+1]$ and $[u: v] \in \mathbb{P}^{1}$, which shows that C is the curve $E^{(1 / n-k+1)}$ for some line E in \mathbb{P}^{n-k+1}. The lines L are tangent to C with multiplicity $n-k+1$. In case $k=n-1$, one has $M_{n-k+1} \simeq \mathbb{P}^{2}$, and one obtains an arrangement of a quadric C with $n-2$ tangent lines. The lines $Y_{0}=0, Y_{1}=0$ and $Y_{2}=0$ are also tangent to this quadric.

From these considerations it is easy to obtain a description of the intersection of $D_{n, k}^{(b)}$ with $\mathbb{P}^{n-k+1} \simeq Z_{n-k+2}=\cdots=Z_{n}=0$. For $D_{3,2}^{(2)}$, this is the arrangement of a quadric with four tangent lines.

Let $H \subset \mathbb{P}^{n}$ be a hyperplane. The intersection $H^{(1 / 2)} \cap M_{2}$ is a quadric, tangent to the lines $Y_{0}=0, Y_{1}=0$ and $Y_{2}=0$, which is very similar to the intersections

Orbifold	Uniform.	Braid group	Ref.
$\mathcal{H}_{n}(2)$	$\left(\mathbb{P}^{1}\right)^{n}$	n !	Cor. 3.4
$\mathcal{H}_{n}(2 ; b, b)$	$\left(\mathbb{P}^{1}\right)^{n}$	$n!b^{n}$	Cor. 3.4
$\begin{aligned} & \mathcal{H}_{n}(2 ; b, c, d) \\ & (1 / b+1 / c+1 / d>1) \end{aligned}$	$\left(\mathbb{P}^{1}\right)^{n}$	$n!2^{n}\left[\frac{1}{b}+\frac{1}{c}+\frac{1}{d}-1\right]^{-n}$	Cor. 3.4
$\begin{aligned} & \mathcal{H}_{n}(2 ; b, c, d) \\ & (1 / b+1 / c+1 / d=1) \end{aligned}$	\mathbb{C}^{n}	Crystallographic	Cor. 3.4
$\mathcal{H}_{n}(2 ; 2,2,2,2)$	\mathbb{C}^{n}	Crystallographic	Cor. 3.4
$\begin{aligned} & \mathcal{H}_{n}\left(2 ; b_{0}, \ldots, b_{m}\right) \\ & \text { (otherwise) } \\ & \hline \end{aligned}$	$\left(\mathbb{B}_{1}\right)^{n}$	Linear	Cor. 3.4
$\mathcal{H}_{n}(\infty ; \infty, \infty)$	-	B_{n}-Artinian	[6]
$\mathcal{H}_{2}(\infty ; \infty, \infty, \infty)$	-	\widetilde{C}_{2}-Artinian	[6]
$\begin{aligned} & \mathcal{H}_{2}(a ; b, b) \\ & (1 / a+1 / b>1 / 2) \end{aligned}$	-	$2 b\left[\frac{1}{a}+\frac{1}{b}-\frac{1}{2}\right]^{-1}$	Prop. 5.1
$\begin{aligned} & \mathcal{H}_{2}(a ; b, b) \\ & (1 / a+1 / b=1 / 2) \end{aligned}$	-	∞ almost solvable	Prop. 5.1
$\mathcal{H}_{3}(a ; \infty)(a=3,4,5)$	-	24, 96, 600	[7]
$\mathcal{H}_{n}(3 ; \infty)(n=4,5)$	-	648, 155520	[7]
$\mathcal{H}_{3}(\infty ; 2)$	-	192	Maple
$\mathcal{H}_{4}(a)(a=4,5)$	-	192, 60	Maple
$\mathcal{H}_{5}(4)$	-	120	Maple
$\mathcal{H}_{2}(a ; 2,2,2)$	K3 ($a=4$)	$4 a^{3}$	[16]
$\mathcal{H}_{2}(3 ; 3,2,2)$	K3	576	[16]
$\mathcal{H}_{2}(3 ; 3,4,4)$ $\mathcal{H}_{2}(4 ; 4,4,4)$ $\mathcal{H}_{2}(3 ; 6,6,2)$ $\mathcal{H}_{2}(3 ; 3,3,6)$ $\mathcal{H}_{2}(3 ; 4,3)$ $\mathcal{H}_{2}(63,3,2)$	\mathbb{B}_{2}	Picard Modular	[11],[16]
$\mathcal{H}_{2}(3 ; 3,4,2) \quad \mathcal{H}_{2}(6 ; 3,3,2)$	$\mathbb{B}_{1} \times \mathbb{B}_{1}$?	Unknown	[16]

Table 1
$D_{n} \cap M_{2}$. In contrast with this, there is the following fact: In a recent article [13], it was proved that the dual of D_{n} is one dimensional (we believe that $D_{n, k}$ and $D_{n, n-k}$ are duals), whereas it is easy to show that $H^{(r / s)}$ and $H^{(r / r-s)}$ are duals, so that the dual of $H^{(1 / 2)}$ is the degree- $(n-1)$ hypersurface $H^{(-1)}$. Note also that D_{n} is of degree $2(n-1)$, whereas $H^{(1 / 2)}$ is of degree 2^{n-1}. It is of interest to know more about the varieties $D_{n, k}^{(r / s)}$ and their duals.

7. Appendix: The curves $L^{(r / s)}$

In \mathbb{P}^{2}, many interesting curves appears as $L^{(r / s)}$, where L is a line. For example, $L^{(1 / 2)}$ is the curve $D_{2,1}$, a quadric tangent to the coordinate lines, $L^{(3 / 2)} \simeq D_{2,1}^{3}$ is a nine cuspidal sextic, $L^{(2 / 3)}$ is a Zariski sextic with 4 nodes and 6 cusps, $L^{(-1 / 2)} \simeq$ $D_{2,1}^{-1}$ is a three cuspidal quartic, $L^{(-1)}$ is a quadric passing through the intersection points of the coordinate lines.
Proposition 7.1. If $r, s \geq 0$ are coprime integers, then $L^{(r / s)}$ is an irreducible curve of degree sr and genus $(r-1)(r-2) / 2$, with $3 r$ points of type $x^{r}=y^{s}$ and $r^{2}(s-1)(s-2) / 2$ nodes.
Proof. We begin by proving that the curves $L^{(1 / s)}$ are nodal. For this, it suffices to show that the orbit of L under the action of the group $\mathbb{Z} /(s) \oplus \mathbb{Z} /(s)$ has only
double points on $\mathbb{P}^{2} \backslash\{x y z=0\}$. If $\omega:=e^{2 \pi i / s}$, then the orbit of L consists of the lines $L_{i j}:=a \omega^{i} x+b \omega^{j} y+c z=0$ for $1 \leq i, j \leq s$. Suppose that no pairs of lines among the lines $L_{i, j}, L_{k, l}, L_{p, q}$ meet on $x y z=0$. Then they meet at a point $\notin\{x y z=0\}$ only if the determinant of the matrix

$$
\left|\begin{array}{ccc}
a \omega^{i} & b \omega^{j} & c \\
a \omega^{k} & b \omega^{l} & c \\
a \omega^{p} & b \omega^{q} & c
\end{array}\right|
$$

vanish. Since $a b c \neq 0$, this is equivalent to the vanishing of

$$
\operatorname{det}\left|\begin{array}{cc}
\omega^{\alpha}-1 & \omega^{\beta}-1 \\
\omega^{\gamma}-1 & \omega^{\theta}-1
\end{array}\right|
$$

where $\alpha:=k-i, \beta:=l-j, \gamma:=p-i$ and $\theta:=q-j$. The integers $\alpha, \beta, \gamma, \theta$ are not multiples of s by hypothesis. Then vanishing of the determinant implies

$$
\frac{\left(\omega^{\alpha}-1\right)\left(\omega^{\theta}-1\right)}{\left(\omega^{\beta}-1\right)\left(\omega^{\gamma}-1\right)}=1 \Rightarrow \frac{\left(\omega^{\alpha / 2}-\omega^{-\alpha / 2}\right)\left(\omega^{\theta / 2}-\omega^{-\theta / 2}\right)}{\left(\omega^{\beta / 2}-\omega^{-\beta / 2}\right)\left(\omega^{\gamma / 2}-\omega^{-\gamma / 2}\right)}=\omega^{(\beta+\gamma-\alpha-\theta) / 2}
$$

Since the left-hand side of the latter expression is real, so must be the right-hand side. Therefore

$$
\operatorname{Im}\left(e^{\pi i(\beta+\gamma-\alpha-\theta) / s}\right)=0 \Rightarrow s \mid \beta+\gamma-\alpha-\theta
$$

But this means that there is a pair of lines meeting at $z=0$, contradiction. This shows that the curves $L^{(1 / s)}$ are nodal.

Since $L^{(1 / s)}$ is a rational curve of degree s, it must have $(s-1)(s-2) / 2$ nodes. Since $L^{(r / s)}=\phi_{r}^{-1}\left(L^{(1 / s)}\right)$, the number of nodes of $L^{(r / s)}$ is $r^{2}(s-1)(s-2) / 2$. Obviously, three flex points of $L^{(1 / s)}$ are lifted as $3 r$ cusps of type $x^{r}=y^{s}$. The genus of $L^{(r / s)}$ can be calculated by the genus formula, or by noting that the curves $L^{(r / s)}$ are coverings of $L^{(1 / s)}$ branched at these three flex points, with the branching index r.

Acknowledgements

I am indebted to Louis Paris, who told me about the work of Paolo Bellingeri. I am grateful to Paolo Bellingeri for helpful discussions about the braid groups of punctured surfaces.

References

1. Allcock, D.: Braid pictures for Artin groups, Trans. A.M.S. 354 (2002) 3455-3474.
2. Amram, M., Teicher, M., Uludağ, A.M. Fundamental groups of some quadric-line arrangements, Topology and its Applications, 1302 (2003), 159-173
3. Artin, E.: Theory of Braids, Ann. Math. 48 (1946), 101-126.
4. Bellingeri, P.: Tresses sur les surfaces et invariants d'entrelacs, Ph.D. Thesis, Institut Fourier, 2003.
5. Bellingeri, P: On presentation of Surface Braid Groups, ArXiv.math. GT/0110129 (2001).
6. Brieskorn, E.: Sur les groupes de tresses [d'aprés V.I. Arnold], Seminaire Bourbaki, Exp. no. 401, No 317 in Springer LNM, 1973, pp. 21-44.
7. Coxeter, H.S.M.: Factor groups of the braid group, Proc. 4 th Canadian Math. Congress, 1959, pp. 95-122.
8. Deligne, P., Mostow, G.D.: Commensurabilities among lattices in $\mathrm{PU}(1, n)$, Princeton University Press, Princeton, 1993.
9. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants and multidimensional determinants Birkhäuser, Boston, 1994.
10. Hirzebruch, F.: Arrangements of lines and algebraic surfaces, Progress in Mathematics 36, Birkhäuser, Boston, 1983, pp. 113-140.
11. Holzapfel R.P., Vladov, V.: Quadric-line configurations degenerating plane Picard-Einstein metrics I-II. Proceedings to 60th birthday of H. Kurke, Math. Ges. Berlin, (2000).
12. Kaneko, J.: On the fundamental group of the complement to a maximal cuspidal plane curve Mémoirs Fac. Sc. Kyushu University Ser. A 39 No. 1 (1985), 133-146.
13. Katz, G.: How tangents solve algebraic equations, or a remarkable geometry of the discriminant varieties, ArXiv:Math.AG/0211281, (2002).
14. Lambropoulou, S.: Braid structures related to knot complements, handlebodies and 3manifolds Knots in Hellas '98 (Delphi) Ser. Knots Everything, 24, 2000, pp. 274-289.
15. Namba, M.: Branched Coverings and Algebraic Functions, vol 161, Pitman Research Notes in Mathematics Series, 1987.
16. Uludağ, A.M.: Covering relations between ball-quotient orbifolds arXiv: math. AG/0302180, (2003).
17. M. Yoshida, Fuchsian Differential Equations, Vieweg Aspekte der Mathematik, 1987.
18. Zariski, O.: On the Poincare group of rational plane curves, Am. J. Math. 58 (3), (1936), 607-618.

[^0]: ${ }^{1}$ The projective relation was kindly communicated by Paolo Bellingeri.

