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Introduction

These notes aims to give an introduction to the theory of orbifolds and their uni-
formizations, along the lines settled in 1986 by M. Kato [12], with special emphasis
on complex 2-dimensional orbifolds (orbifaces).

An orbifold is a space locally modeled on a smooth manifold modulo a finite
group action, which is said to be uniformizable if it is a global quotient. They were
first studied in the 50’s by Satake under the name “V-manifold” and renamed by
Thurston in the 70’s. Orbifolds appear naturally in various fields of mathemat-
ics and physics and they are studied from several points of view. In these notes
we focus on the uniformization problem and consider almost exclusively orbifolds
with a smooth base space. In most cases this base will be a complex projective
space. From this perspective, orbifolds can be viewed as a refinement of the double
covering construction of special algebraic varieties. The first steps in this refine-
ment were taken by Hirzebruch [9], culminating in the monograph [1] devoted to
Kummer coverings of P2 branched along line arrangements. Kobayashi [13] studied
more general coverings with non-linear branch loci with non-nodal singularities.

Many basic topological invariants such as the fundamental group has an
orbifold version, and the usual notion of Galois covering is extended to orbifolds
in a straightforward way. It was observed by Yoshida that orbifold germs are
related via covering maps. We elaborate on this observation and show that many
interesting orbifolds (e.g. the ball-quotient orbifolds) are related via covering maps.
Note that a covering relation between ball-quotient orbifolds is nothing but a
commensurability among the corresponding lattices acting on the ball.

The plan of the paper is as follows: Section 1 gives some background on
branched coverings. Section 2 includes fundamental facts and definitions about
orbifolds. Section 3 is devoted to the local structure and singularities of orbifolds,
especially in dimension 2. Section 4 sketches the solutions of the global uniformiza-
tion problem for some special orbifolds. In particular, Section 4.1 includes a com-
plete classification of abelian finite smooth branched coverings of P2. This amounts
to the classification of algebraic surfaces with an abelian group action whose quo-
tient is isomorphic to P2. There are also many examples of non-abelian coverings.

These notes were typeset during my stay in IHES during August 2005 and are
based on talks delivered at the CIMPA Summer School Arithmetic and Geometry
around hypergeometric functions (2005) held in Istanbul and the EMS Summer
School Braid Groups and Related Topics (2005) held in Tiberias. I am grateful to
Professor Mina Teicher and Dr. Tzachi Ben-Itzhak for their hospitality. Diagrams
of the paper were typeset by Paul Taylor’s Commutative Diagrams package.



Orbifolds and their uniformization 3

zm

z

Figure 1.1. A model branched covering

1. Branched Coverings

Here we collect some facts about branched coverings which can mostly be found
in Namba’s book [16]. In what follows a variety is always irreducible, defined over
C and endowed with the strong topology.

A surjective finite holomorphic map ϕ : M → X of normal varieties is called
a branched covering. A topological finite covering map is a very special kind of
branched covering. Any non-constant map between compact Riemann surfaces
is a finite branched covering. If M ⊂ Pn is an irreducible hypersurface, then the
restriction onto M of a generic projection Pn → Pn−1 is a finite branched covering.
A blow-down is not a branched covering since it is not a finite map. An immersion
into a higher dimensional space is not a branched covering since it is not surjective.

Example 1.1. (model branched coverings) The map ϕm : z ∈ C → zm ∈ C is a
branched covering. More generally, the map

ϕm : (z1, z2, . . . , zn) ∈ C
n → (zm1 , z2, z3, . . . , zn) ∈ C

n

is a branched covering.

A morphism between branched coverings ϕ : M → X and ψ : N → Y
is a surjective holomorphic map µ : M → N such that the following diagram
commutes:

M
µ - N

X
�

ψϕ
-

An isomorphism of branched covering spaces is a morphism that is a biholo-
morphism. The group Gϕ of all automorphisms of ϕ is finite and acts on every
fiber of ϕ. A finite branched covering ϕ : M → X is called a finite branched Galois
covering if Gϕ acts transitively on every fiber of ϕ. In this case the orbit space
M/Gϕ is biholomorphic to X (see [4]).
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The ramification locus of a finite branched covering ϕ : M → X is defined by

Rϕ := {p ∈M : ϕ is not biholomorphic around p}
The image Bϕ := ϕ(Rϕ) is called the branch locus of ϕ and the map ϕ is said to be
branched along Bϕ. In case ϕ is a topological covering then both Rϕ and Bϕ are
empty, such ϕ is said to be unbranched. The restriction ϕ : M\Rϕ → X\Bϕ is an
unbranched covering. Conversely, the Grauert-Remmert theorem states (see [18])

Theorem 1.1. Let X be a normal variety and B a finite union of proper subvarieties
of codimension one. Given a topological unbranched finite covering ϕ′ : M ′ → X\B
with M ′ being connected, there exists an irreducible normal variety M with a finite
branched covering ϕ : M → X and a homeomorphism s : M ′ → ϕ−1(X\B) such
that ϕ(x) = ϕ′(s(x)) for all x ∈M ′.

By this theorem, there is a correspondence between subgroups of π1(X\B)
of finite index and finite coverings of X branched along B. If ϕ′ is Galois then so
is ϕ ([8], Proposition I.2.8) and therefore the covering ϕ is Galois if and only if the
corresponding subgroup is normal.

Consider the model branched covering ϕm introduced in Example 1.1. Both
Rϕ and Bϕ are hypersurfaces in Cn defined by the equation z1 = 0. Let ϕ : M → X
be a branched covering. If X is singular, then Rϕ and Bϕ can be of codimension
> 1, even when ϕ is a non-trivial branched cover. If X is smooth, then by Zariski’s
“purity of the branch locus” theorem (see [25]), Rϕ is a hypersurface in M and
Bϕ is a hypersurface in X .

The ramification divisor of a finite branched covering ϕ : M → X of smooth
spaces is the divisor of its jacobian; for singular spaces it can be defined for the
restriction of ϕ to smooth parts of M and X and then extended. (If ϕ is ramified
only along a singular part then the ramification divisor is empty). The ramification
divisor lives onM . If ϕ : M → X is Galois, it is possible to define the branch divisor
on X as follows: let H1, . . . , Hk be the irreducible components of the branch locus
Bϕ. Let p ∈ Hi be a smooth point of Bϕ. Let U be a small neighborhood of p and
V be a connected component of ϕ−1(U). The degree mi of ϕ|V does not depend
on p and is called the branching index of ϕ along Hi. Then the branch divisor is
defined as

Dϕ :=

k∑

i=1

miHi

Definition 1.2. Let X be a complex manifold and D = ΣmiHi be a divisor with
coefficients in Z>0. A Galois covering ϕ : M → X is said to be branched at D if
Dϕ = D.

Example 1.2. Let H ⊂ C
n be a hypersurface given by the reduced polynomial

f ∈ C[x1, . . . , xn] and letM ⊂ Cn+1 be the hypersurface defined by the polynomial
zm − f ∈ C[z, x1, . . . , xn]. Let π be the projection

π : (z, x1, . . . , xn) ∈ C
n+1 → (x1, . . . , xn) ∈ C

n
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Figure 1.2. A meridian

Then the restriction π : M → C
n is a finite branched Galois covering with Z/(m)

as the Galois group. The branch locus of π is precisely the hypersurface H , and
the branch divisor is mH . Note that if the origin is a singular point of H then M
also has a singularity at the origin.

Let X be a normal variety and B = ∪Hi be a hypersurface with irreducible
componentsHi. Take a base point ? ∈ X\B and let p ∈ Hi be a smooth point of B.
A meridian of Hi in X\B is the homotopy class of a loop µp in X\B constructed
as follows: Take a small disc ∆ intersecting B transversally at p. Let ω be a path
in X\B connecting ? to a point of ∂∆. Then µ := ω · δ · ω−1, where δ is the
path obtained by following ∂∆ in the positive sense. It is well known that any two
meridians of a fixed irreducible component Hi are conjugate elements in π1(X\B).

Let D =
∑k

1 miHi, where Hi are irreducible and take meridians µ1 of H1

. . .µk of Hk in X\ ∪ Hi. The orbifold fundamental group of the pair (X,D) is
defined as

πorb1 (X,D) := π1(X\D, ?)/〈〈µm1

1 , . . . , µmk

k 〉〉,
where 〈〈〉〉 denotes the normal closure. (Note that the definition of an orbifold will
wait till the next section.)

Let D = Σk1miHi and let K be a normal subgroup of finite index in π1(X\D).
The Galois covering corresponding to K is branched at D if and only if the fol-
lowing two conditions are satisfied:

Condition (i) K contains the elements µm1

1 , . . . , µmk

k

Condition (ii) µmi /∈ K for m < mi

Condition (ii) will be called the Branching Condition in the sequel. Let G :=
π1(X\D)/K be the corresponding Galois group. Then Condition (i) amounts to
the existence of the factorization

π1(X\D)
ϕ -- G

πorb1 (X,D)

ψ

--

--
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whereas the branching condition means that ϕ(µi) ∈ G is strictly of order mi. We
conclude that the coverings of X branched at D are really controlled by the group
πorb1 (X,D), and there is a Galois correspondence between the Galois coverings of
X branched at D and normal subgroups of πorb1 (X,D) satisfying the branching
condition. In particular a covering of X branched at D is simply connected if and
only if it is universal, i.e. the Galois group is the full group πorb1 (X,D). Observe
that the group πorb1 (X,D) may fail to satisfy the branching condition. In this case
there are no coverings of X branched at D (see Example 1.3 below).

The following lemma follows from ([7], & 7)

Lemma 1.3. Let M → X be a Galois covering branched at D and with the Galois
group G. Then there is an exact sequence

0 → π1(M) → πorb1 (X,D) → G → 0

Example 1.3. Let X := Pn where n > 1 and let H0, . . . , Hk be k hyperplanes
in general position. Let m0,m1, . . . ,mk be k + 1 distinct prime numbers and put
D := Σk0miHi. By a result of Zariski the group π1(P

n\D) is abelian and it admits
the presentation

π1(P
n\D) '

〈
µ0, . . . , µk

∣∣∣
∑k

0miµi = 0
〉
,

where µi is a meridian of Hi for i ∈ [0, k]. Consequently, one has

πorb1 (Pn, D) '
〈
µ0, . . . , µk

∣∣∣m0µ0 = · · · = mkµk =
∑k

0miµi = 0
〉

It is easy to see that this latter group is trivial, hence there are no coverings of Pn

branched at D. On the other hand, in case m0 = · · · = mk = m there is a covering
branched at D, since the group

πorb1 (Pn, D) ' Z/(m) ⊕ . . .⊕ Z/(m) (k copies)

satisfy the Branching Condition. As we will see in the next section, the universal
covering branched at D is smooth if k ≥ n. In case k = n we can show this
immediately: The power map

ϕm : [z0 : · · · : zn] ∈ P
n → [zm0 : · · · : zmn ] ∈ P

n

is a Galois covering map branched at the divisor Σn0mHi where Hi is the hy-
perplane {zi = 0} (the arrangement H0 ∪ · · · ∪ Hn is unique up to projective
transformations). Note that ϕm is the universal covering branched at D.

1.1. Branched coverings of P1

Example 1.3 concerns projective spaces of dimension > 1. The situation is very
different in dimension 1. Let X = P1, take distinct points p0, . . . , pk in P1 and let
m0, . . . ,mk be integers > 1. Put D := Σk0mipi. (According to the definition that
will be given in the next section, the pair (P1, D) will be an orbifold). One has the
presentation

π1(P
1\{p0, . . . , pk}) '

〈
µ0, . . . , µk

∣∣∣µ0 . . . µk = 1
〉
,
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which is a free group of rank k. For the orbifold fundamental group one has

πorb1 (P1, D) =
〈
µ1, . . . , µk

∣∣∣µm0

0 = · · · = µmk

k = µ0 . . . µk = 1
〉

Let M → P
1 be a covering branched at D with G as the Galois group. By the

Riemann-Hurwitz formula the euler number e(M) of M equals

e(M) = |G|
[
e(P1\{p0, . . . , pk}) +

∑k
0

1

mi

]
= |G|

[
1 − k +

∑k
0

1

mi

]
(1.1)

Recall that by the Koebe-Poincaré theorem, up to biholomorphism there are only
three simply connected Riemann surfaces: the Riemann sphere P1, the affine plane
C, and the Poincaré disc ∆. If M is a compact Riemann surface, either e(M) > 0
and M ' P

1 (and therefore e(M) = 2), or e(M) = 0 and the universal cover of
M is C, or e(M) < 0 and the universal cover of M is ∆. Note that in (1.1) the
signature of e(M) is already determined by the data (P1, D) and no information
on G is needed. Accordingly, let us define

eorb(P1, D) = 1 − k +

k∑

0

1

mi
⇒ e(M) = |G|eorb(P1, D) (1.2)

In particular, if M → P1 is a covering branched at D and with G as the Galois
group, then

|G| =
e(M)

eorb(P1, D)
(1.3)

For k = 0 one has eorb(P1, D) = 1+1/m0, which is positive. Hence if M → P
1

is a covering branched at D, then e(M) > 0 ⇒M ' P1. Suppose that this covering
exists and let G be the Galois group. By (1.3) one has |G| = 2/(1 + 1/m0), which
is not integral unless m0 = 1. Hence for k = 0 there are no coverings branched
at D, unless m0 = 1. We could also deduce this result by looking at the group
πorb1 (P1, D). Indeed, for k = 0 this group is trivial and the Branching Condition
can not be satisfied.

In case k = 1 one has eorb(P1, D) = 1/m0 + 1/m1 > 0. Hence, if a covering
M → P1 branched at D exists, then M ' P1. Suppose that it exists and let G be
its Galois group. By (1.3) one should have |G| = 2m0m1/(m0 + m1) ∈ Z>0. By
the Branching Condition G must contain elements of order m0 and m1, in other
words |G| must be divisible by m0 and m1. This is possible only if m := m0 = m1.
In this case a covering branched at D exists, it is the power map ϕm : [z0 : z1] ∈
P

1 → [zm0 : zm1 ] ∈ P
1. We could also deduce this result by looking at the group

πorb1 (P1, D) as in the example above.
Now let us consider the case k = 2. Observe that a three-point set in P1

is projectively rigid, i.e. any two such sets can be mapped onto each other by a
projective transformation. Assume m0 ≤ m1 ≤ m2 and put ρ := 1/m0 + 1/m1 +
1/m2. The orbifold euler number is then ρ− 1.

If ρ−1 > 0 then the covering must be P1. Hence, if a covering branched at D
exists, the Galois group must be of order 2ρ−1. In this case, either m0 = m1 = 2
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Group (m0,m1,m2) order
Cyclic (1,m,m) m
Dihedral (2, 2,m) 2m
Tetrahedral (2, 3, 3) 12
Octahedral (2, 3, 4) 24
Icosahedral (2, 3, 5) 60

Table 1. Finite subgroups of PGL(2,C).

or (m0,m1,m2) is one of (2, 3, 3), (2, 3, 4) or (2, 3, 5), the corresponding Galois
groups must be of orders 2n, 12, 24 and 60 respectively. The group

πorb1 (P1,m0p0 +m1p1 +m2p2) '
〈
µ0, µ1, µ2 |µm0

0 = µm1

1 = µm2

2 = µ0µ1µ2 = 1
〉

is called a triangle group, it turns out that it is finite of (the right) order 2ρ−1 if
ρ > 1 and satisfies the Branching Condition. Hence there exists Galois coverings
P1 → P1 branched atD. Historically this follows from Klein’s classification of finite
subgroups of PGL(2,C) ' Aut(P1). Each group is the symmetry group of one of
the platonic solids inscribed in a sphere. An independent proof of this result will
be given in Section 2.6, except in the icosahedral case.

If ρ − 1 = 0 then the orbifold euler number of (P1,m0p0 + m1p1 + m2p2)
vanish, and (m0,m1,m2) is one of (2, 3, 6), (2, 4, 4) or (3, 3, 3) (one may also add the
triple (2, 2,∞)). In these cases, the abelianizations Ab

(
πorb1 (X,D)

)
are finite and

satisfies the Branching Condition. Hence, they are covered by Riemann surfaces of
genus 1 (an elliptic curve), and their universal covering is C. The groups πorb1 (X,D)
are infinite solvable. Similary, the Galois coverings branched at the divisors D :=
2m0 + 2m1 + 2m2 + 2m3 are also elliptic curves. Each one of these coverings
corresponds to a regular tessellation of the plane.

Any pair (P1, D) not considered above has negative orbifold euler character-
istic. The question of existence of finite coverings branched at D in this case is
known as Fenchel’s problem. It amounts to finding finite quotients of πorb1 (P1, D)
satisfying the Branching Condition and is of combinatorial group theoretical in
nature. Fenchel’s problem has been solved by Bundgaard-Nielsen [2] and was gen-
eralized by Fox [6] to pairs (R,D) where R is a Riemann surface. These pairs
are covered by Riemann surfaces of genus > 1 and their universal covering is the
Poincaré disc. Summing up, we have

Theorem 1.4. (Bundgaard-Nielsen, Fox) Let k ≥ 2 and let D := Σk
0mipi be a

divisor on P1. Then there exists a finite Galois covering M → P1 which is branched
at D; and M is
(i) (elliptic case) P1 if k = 1 and m0 = m1 or k = 2 and Σ2

01/mi > 1,
(ii) (parabolic case) a Riemann surface of genus 1 if k = 2 and Σ2

01/mi = 1 or
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k = 3 and m0 = · · · = m3 = 2 and
(iii) (hyperbolic case) a Riemann surface of genus > 1 otherwise.

1.2. Fenchel’s problem

In the last part of this section we present some results on branched coverings,
which are of independent interest.

The natural generalization of Fenchel’s problem to higher dimensions is: given
a complex manifold X and a divisor with coefficients in Z>1 on X , decide whether
the there exists a Galois coveringM → X branched atD, regardless of the question
of desingularization. There is no hope for a complete solution of the generalized
Fenchel’s problem as in Theorem 1.4, since the group π1(X\supp(D)) does not
admit a simple presentation, and it can be trivial, abelian, finite non-abelian, or
infinite. However, there are some partial results obtained by several authors.

Theorem 1.5. (Kato) Let H := H0 ∪ · · · ∪ Hk be an arrangement of lines in P2

such that any line contains a point of multiplicity at least 3. Let m0, . . . ,mk ∈ Z>1

and put D := Σk0miHi. Then there exists a finite Galois covering of P2 branched
at D.

Kato also describes the resolution of singularities of the covering surfaces, and
this resolution is compatible with the blowing-up of points of multiplicity > 2 of the
branch locus. There is a generalization of the Kato theorem to conic arrangements
given by Namba [16]. At the other extreme there is the following result concerning
irreducible curves. Recall that for p, q coprime integers Oka [17] constructed an
irreducible curve Cp,q of degree pq and with π1(P

2\Cp,q) ' Z/(p) ? Z/(q). For a
proof of the following theorem see [23].

Theorem 1.6. If Cp,q is an Oka curve, then for any m ≥ 1 there exists a finite
Galois covering of P

2 branched at mCp,q.

Given a projective manifold X , which groups can appear as the Galois group
of a branched covering of X ? This question has the following solution.

Theorem 1.7. (Namba [15]) (i) For any projective manifold X and any finite group
G there is a finite branched Galois covering M → X with G as the Galois group.
(ii) For n ≥ 2 there exists a covering of the germ (Cn, 0) with a given finite Galois
group.

2. Orbifolds

In the previous section we studied branched Galois coverings of complex manifolds,
which are possibly singular. Under which conditions a finite branched covering of
a complex manifold is smooth? Loosely speaking, an orbifold is a pair (X,D) that
locally admits a branched covering by a smooth manifold.
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2.1. Transformation groups

A transformation group is a pair (G,M) where M is connected complex manifold
and G is a group of holomorphic automorphisms of M acting properly discontin-
uously, in particular for any z ∈M the isotropy group

Gz := {g ∈ G : gz = z}
is finite. The most important example of a transformation group is (G,M), where
M is a symmetric space such as the polydisc ∆n or the n-ball Bn. Let (G,M) be
a transformation group and X its orbit space with the projection ϕ : M → X .
The orbit space X is an irreducible normal analytic space endowed with a b-map
defined as

bϕ : x ∈ X → |Gz| ∈ Z>0

where z ∈ ϕ−1(x). In dimension 1 the orbit space X is always smooth. In higher
dimensions X may have singularities of quotient type.

The product of two transformation groups (G1,M1) and (G2,M2) is the
transformation group (G1 ×G2,M1 ×M2) where G1 ×G2 acts in the obvious way.

Example 2.1. (The power map) The model example of a transformation group is
(Z/(m),C), where m ∈ Z>0 and the element [j] ∈ Z/(m) acts by

ψ[j] : z ∈ C → ωjz ∈ C,

ω being a primitive m-th root of unity. The orbit space of (Z/(m),C) is C. The
orbit map is the power map ϕm : z ∈ C → zm ∈ C. The isotropy group of the
origin is the full group Z/(m), whereas the isotropy group of any other point is
trivial. Hence the b-map is

bϕ(x) =

{
m x = 0
1 x 6= 0

(2.1)

More generally, consider the product transformation group (⊕n
i=1Z/(mi),C

n). Ob-
viously Cn is the orbit space of (⊕n

i=1Z/(mi),C
n), and the orbit map is ϕ~m :

(z1, . . . , zn) → (zm1

1 , . . . , zmn

n ). Let Hi be the hyperplane defined by zi = 0. The
b-map of ϕ~m is

bϕ~m
(p) =

∏

p∈Hi

mi

Example 2.2. (The projective power map) Let as above (G,Cn+1) be the product
of n + 1 copies of the transformation group (Z/(m),C), where G := ⊕n

i=0Z/(m).
Let ω be a primitive mth root of unity, the element ([j0], . . . [jn]) ∈ G acts by

ψ([j0],...,[jn]) : (z0, . . . , zn) ∈ C
n+1 → (ωj0z0, ω

j1z1 : · · · : ωjnzn) ∈ C
n+1

Projectivizing Cn+1, we get the projective space Pn. The diagonal ∆ := {(g, . . . , g) | g ∈
Z/(m)} of G acts trivially on Pn. The quotient G/∆ ' (Z/(m))n acts faithfully
on Pn. The orbit space of (G/∆,Pn) is Pn itself. The orbit map is

ϕm : [z0 : · · · : zn] ∈ P
n → [zm0 : · · · : zmn ] ∈ P

n
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2m

2m 2m

m m

m

1

Figure 2.3. The b-map of the bicyclic covering ϕ2 : P
2 → P

2

The map ϕm is called a polycyclic covering of P
n. Let Hi := {zi = 0}. For any

point p ∈ Pn denote by α(p) the number of hyperplanes Hi through p. Then the
b-map of ϕm is (see Figure 2.3 for the case n = 2).

b(p) = mα(p) (2.2)

Example 2.3. (A singular orbit space) Consider the action of [j] ∈ Z/(m) on C2

by
ψ[j] : (x, y) ∈ C

2 → (ωjx, ω−jy) ∈ C
2

The orbit space of (Z/(m),C2) is the hypersurface in C3 defined by zm = xy,
since the quotient map is ψ : (x, y) → (xm, ym, xy). This hypersurface has a cyclic
quotient singularity at the origin.

2.2. Transformation groups and branched coverings

A transformation group is a locally finite branched Galois covering, as we now
proceed to explain. Let (G,M) be transformation group with the orbit space X .
Let ϕ : M → X be the orbit map and put

Rϕ := {z ∈ M : |Gz | > 1} and Bϕ := {x ∈ X | bϕ(x) > 1} (= ϕ(Rϕ)),

where Gz is the stabilizer of z. Let X̄ := X\Sing(X) be the smooth part of X .
(It can happen that a singularity of X lies on Bϕ). Let x ∈ X̄ and z ∈ ϕ−1(x).
Let Mz be the germ of M at z and Xx the germ of X at x. Then Gz acts on Mz,
and the orbit space is Xx. Since |Gz| is finite and Xx is smooth, the orbit map of
germs

ϕz : Mz → Xx

is a finite Galois covering branched along Bϕ,x Therefore locally one can define
the branch divisor Dϕ,x, and the local branch divisors patch and yield a global
branch divisor Dϕ supported by Bϕ. Let Dϕ = ΣmiHi, where H1, H2 . . . are the
irreducible components of Bϕ. The divisor Dϕ is always locally finite and in all
of the cases considered in this article, it is a finite sum. Thus Dϕ is defined on
the smooth part X̄ of X - in what follows its closure in X will be denoted by Dϕ

again.
Let us turn our attention to the covering-germ ϕz : Mz → Xx, which is a

finite Galois covering branched at Dϕ,x. Since Mz is a smooth germ, it is simply
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connected. Hence ϕz must be the universal covering branched at Dϕ,x, in other
words the Galois group of ϕz is

Gz ' πorb1 (X,Dϕ)x,

where we denote the germ-pair (Xx, Dx) by (X,D)x. In particular, one has

b(x) = |Gx| = |πorb1 (X,Dϕ)x|
which also shows that the latter groups must be finite.

What is said above is in fact true for a singular point x ∈ X . For simplicity,
assume that x /∈ Bϕ. Since Mz is a smooth germ it is simply connected and thus
the covering germ ϕz : Mz → Xx must be universal. In other words the Galois
group is Gz ' π1(Xx). For example, if X ⊂ C3 is defined by zm = xy, then π1(XO)
is cyclic of order m, see Example 2.3.

2.3. b-spaces and orbifolds

Recall that a transformation group (G,M) induce a b-map on its orbit space X .
Conversely, let X be a normal complex space and b a map X → Z>0. The pair
(X, b) is called a b-space. The basic question related to a b-space is the uniformiza-
tion problem: Under which conditions does there exist a (finite) transformation
group (G,M) with X as the orbit space and with the quotient map ϕ : M → X
such that b = bϕ ? In case such a transformation group exist, it is called a uni-
formization of (X, b) and (X, b) is said to be uniformized by (G,M). Observe
that these definitions can be localized. Obviously, if (X, b) is uniformizable then
it is locally finitely uniformizable, that is the germs (X, b)x must admit finite
uniformization.

Definition 2.1. A locally finite uniformizable b-space (X, b) is called an orbifold.
The space X is said to be the base space of (X, b), and (X, b) is said to be an
orbifold over X . The set {x ∈ X | b(x) > 1} is called the locus of the orbifold. An
orbifold with a two-dimensional base is called an orbiface.

Orbifolds (X, b) and (X ′, b′) are said to be equivalent if there is a biholomor-
phism ε : X → X ′ such that the following diagram commutes.

X
ε - X ′

Z>0

�

b
′b

-

The product of two b-spaces (X1, b1) and (X2, b2) is the b-space (X1, b1) ×
(X2, b2) which is defined as (X1 ×X2, b) where b(x, y) := b1(x)b2(y). If (Xi, bi) is
an uniformized by (Gi,Mi) for i = 1, 2, then the product orbifold is uniformized
by (G1,M1) × (G2,M2).
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Let (X, b) be an orbifold. Then by locally finite uniformizability its locus B
is a locally finite union of hypersurfaces H1, H2 . . . , and b must be constant along
Hi\(Sing(B) ∪ Sing(X)). Let mi be this number, and put Db := ΣmiHi (in most
cases of interest this will be a finite sum). The orbifold fundamental group of (X, b)
is defined as the orbifold fundamental group of the pair (X,Db).

Lemma 2.2. If (X, b) is an orbifold, then b(x) = |πorb1 (X, b)x| for any x ∈ X.

Proof. Let x ∈ X . Since (X, b) is an orbifold, the germ (X, b)x admits a finite
uniformization. Hence there is a (unique) transformation group (Gz ,Mz) with
(X, b)x as the orbit space, such that bϕz

= bx, where ϕz : Mz → (X, b)x is the
quotient map and ϕ−1

z (x) = {z} (in other words Gz stabilizes z). By Lemma 1.3
one has the exact sequence

0 → π1(Mz) → πorb1 (X, b)x → Gz → 0

Since Mz is smooth, it is simply connected, so that Gz ' πorb1 (X, b)x. Hence
b(x) = |Gz | = |πorb1 (X, b)|. �

Let (X, b) be an orbifold and let Db := ΣmiHi be the associated divisor.
Since πorb1 (X, b)x is defined as the group πorb1 (X,Db)x, and since this latter group is
determined byDb, Lemma 2.2 implies that the b-function is completely determined
by Db. In other words the pair (X,Db) determines the pair (X, b). On the other
hand in dimensions ≥ 2 most pairs (X,D) do not come from an orbifold. The
local uniformizability condition puts an important restriction on the possible pairs
(X,D), in particular the local orbifold fundamental groups of (X,D) must be
finite. In dimension 2 this latter condition is sufficient for local uniformizability,
since by a theorem of Mumford a simply connected germ is smooth in dimension
2, see Theorem 3.1 below. This is no longer true in dimensions ≥ 3, see [3] for
counterexamples.

Example 2.4. Consider the orbifold (C, bm), where

bm(z) =

{
m z = 0
1 z 6= 0

This orbifold is uniformized by the transformation group (Z/(m),C), the uni-
formizing map is the power map. The (multivalued) inverse of a covering map is
called a developing map. In this case the developing map is ϕ−1

m : [x : y] ∈ P
1 →

[x1/m : y1/m] ∈ P1.

Example 2.5. Let p0, . . . , pk be k + 1 distinct points in P1 and let m0, . . . ,mk be
positive integers. Let b : P1 → Z>0 be the function with b(pi) = mi for i ∈ [0, k]
and b(p) = 1 otherwise. Around the point pi the b-space (P1, b) is uniformized
by the transformation group (Z/(mi),C). Hence, (P1, b) is an orbifold, which can
also be denoted by (P1,Σk0mipi). Theorem 1.4 completely answers the question of
uniformizability of these orbifolds.
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q

p

p q

r

Figure 2.4. Some orbiface germs with a smooth base

Example 2.6. (See Figure 2.4) Let p, q be two integers and consider the germ
(C2, b)0 where b(0, 0) = pq, b(x, 0) = q for x 6= 0, b(0, y) = p for y 6= 0 and
b(x, y) = 1 for xy 6= 0. Put H1 := {x = 0} and H2 := {y = 0}. The group
π1(C

2\(H1 ∪H2))0 is the free abelian group generated by the meridians of H1, H2

so that πorb1 (C2, b)0 ' Z/(p)⊕Z/(q) is finite. This is indeed an orbifold germ, the
map (x, y) ∈ C2 → (xp, yq) ∈ C is its uniformization. On the other hand, consider
the germ of the pair (C2, D) at the origin, where D = pH1 + qH2 + rH3 with
H1 := {x = 0}, H2 := {y = 0} and H3 := {x− y = 0}. One has

π1(C
2\(H1 ∪H2 ∪H3)) '

〈
µ1, µ2, µ3 | [µi, µ1µ2µ3] = 1 (i ∈ [1, 3])

〉

where µi is a meridian of Hi for i ∈ [1, 3] (see [24]). The local orbifold fundamental
group admits the presentation

πorb1 (C2, D)0 '
〈
µ1, µ2, µ3 | [µi, µ1µ2µ3] = µp1 = µq2 = µr3 = 1 (i ∈ [1, 3])

〉

Obviously, adding the relation δ = 1 to this group gives a triangle group. Hence
this group is a central extension of the triangle group and is finite of order 4ρ−2

if ρ := 1/p+ 1/q + 1/r − 1 > 0, infinite solvable when ρ = 0 and “big” otherwise.
(Here, “big” means that the group contains non-abelian free subgroups.) Hence
(C2, D)0 do not come from an orbifold germ if ρ < 0. For ρ > 0 it comes from an
orbifold germ, its uniformization will be described explicitly in Section 3.2.

2.4. Uniformizability

Let (X, b) be an orbifold and let Db be the associated divisor. Recall that the
group πorb1 (X, b) is by definition the group πorb1 (X,Db). If

ρ : πorb1 (X, b) � G

is a surjection onto a finite group with Ker(ϕ) satisfying the branching condition,
then there exists a Galois covering ϕ : M → X branched at Db, where M is a
possibly singular normal space.

Example 2.7. Let (X, b) = (C2, b) with b(0, 0) = m2, b(x, 0) = m = b(0, y) (x, y 6=
0) and b(x, y) = 1 otherwise, where m ∈ Z>1. Then Db = mH1 + mH2, where
H1 := {x = 0} and H2 := {y = 0}. Consider the covering

ϕ : (x, y, z) ∈ {zm = xy} ⊂ C
3 −→ (x, y) ∈ C

2
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This is a Z/(m)−Galois covering branched atD with bϕ(0, 0) = bϕ(0, y) = bϕ(x, 0) =
m and bϕ(x, y) = 1 otherwise. The covering space is singular. Note that bϕ 6= b.
On the other hand, the Galois covering ψ : (x, y) ∈ C2 → (xm, ym) ∈ C2 satisfies
bψ = b, and it is smooth.

Lemma 2.3. Let (X, b) be an orbifold, and ϕ : M → X a Galois covering branched
at Db. Then M is smooth if and only if bϕ ≡ b.

Proof. For any x ∈ X , there is the induced branched covering of germs ϕx : Mz →
Xx, where z ∈ ϕ−1(x). The stabilizer Gz is the Galois group of ϕx. The germ
Mz is smooth only if ϕx is the uniformization map of the germ (X, b)x, which is
the universal branched covering and has πorb1 (X, b)x as its Galois group. In other
words, Mz is smooth if and only if Gz ' πorb1 (X, b)x, if and only if

bϕ(x) = |G(z)| = |πorb1 (X, b)x| = b(x)

�

For a point x ∈ X , there is a natural map

π1(X\Db)x −→ π1(X\Db)

and therefore a map ιx : πorb1 (X, b)x → πorb1 (X, b), induced by the inclusion. The
group Gz is the image of the composition map

ρ ◦ ιx : πorb1 (X, b)x −→ πorb1 (X, b) → G

Theorem 2.4. Let ρ : πorb1 (X, b) � G be a surjection and let ϕ : M → X be
the corresponding Galois covering of X branched along Db. The pair (G,M) is a
uniformization of the orbifold (X, b) if and only if for any x ∈ X, the map

ρ ◦ ιx : πorb1 (X, b)x → G

is an injection.

Proof. One has bϕ ≡ b if and only if for any x ∈ X and z ∈ ϕ−1(x) the image Gz
of ρ◦ ιx is the full group πorb1 (X, b)x. The result then follows from Lemma 2.2. �

2.5. Sub-orbifolds and orbifold coverings

Let (X, b) be an orbifold. An orbifold (X, b′) is said to be a sub-orbifold of (X, b)
if b′(x) divides b(x) for any x ∈ X . Let ϕ : Y → X be a uniformization of (X, b′).
Define the function c : Y → Z>0 by

c(y) :=
b(ϕ(y))

b′(ϕ(y))

Then ϕ : (Y, c) → (X, b) is called an orbifold covering, and (Y, c) is called the lifting
of (X, b) to the uniformization Y of (X, b′). The exact sequence of Lemma 1.3 can
be generalized to the following commutative diagram:
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0 0

0 - π1(Y )

6

- πorb1 (X, b′)

6

- G - 0

0 - πorb1 (Y, c)

6

- πorb1 (X, b)

6

- G

'
6

- 0

Example 2.8. Let m,n ∈ Z>0 and consider the orbifold (C, bmn) defined in Ex-
ample 2.5. Then (C, bm) is a suborbifold of (C, bmn), which is uniformized via
ϕm : z ∈ C → zm ∈ C. Hence ϕ is an orbifold covering (C, bn) → (C, bmn).

Remark 2.5. If Y ⊂ X is an irreducible subvariety of positive codimension, then an
orbifold structure (X, b) on X induces an orbifold structure on the normalization
of Y as follows (note that Y may belong to the locus of (X, b)): Let y ∈ Y , and

take an irreducible branch Ỹy of the germ Yy. Since (X, b) is an orbifold, there

is a finite uniformization ϕz : Mz → Xy. The germ ϕ−1
z (Ỹy) may or may not

be irreducible. The restriction of ϕz to an irreducible component of ϕ−1
z (Ỹy) is a

branched Galois covering onto Ỹy. Let b′y be its b-map. The b-maps b′y for varying
y patch together and yield a b-map b′ on Y . Then (Y, b′) is the induced orbifold
structure on Y , which might also be called a suborbifold of (X, b). If ϕ : M → X
is a uniformization of (X, b), then its restriction to an irreducible component of
ϕ−1(Y ) is a uniformization of (Y, b′). The induced orbifold has a significance in
relative proportionality, if dim(X) = 2 and dim(Y ) = 1 then (Y, b′) is relatively
proportional only if and only if the natural map πorb1 (Y, b′) → πorb1 (X, b) is an
injection.

2.6. Covering relations among triangle orbifolds

Convention. In order to present an orbifold (X, b) one has to specify its b-map.
However, since by Lemma 2.2 the pair (X,Db) determines the orbifold (X, b),
an orbifold can be presented by a pair (X,D). Since the latter presentation is
sometimes more practical, we shall use it in the sequel. To be precise, in what
follows the expression “the orbifold (X,D)” refers to the pair (X, b), where the
b-map is defined by b(p) := |πorb1 (X,D)p| (it is implicitly assumed that (X, b) is
indeed an orbifold, i.e. it is locally finite uniformizable).

Let us illustrate the notion of orbifold coverings in the simplest, one-dimensional
setting. In this subsection, we fix three points p0 = [1 : 0], p1 = [0 : 1], p2 := [1 : 1]
in P1. Consider first the orbifold (P1, rm0p0 + rm1p1). Then (P1, rp0 + rp1) is a
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suborbifold, which is uniformized by (Z/(r),P1) via ϕr : [x : y] → [xr : yr]. Hence,
there is an orbifold covering

ϕr : (P1,m0p0 +m1p1) → (P1, rm0p0 + rm1p1)

Coverings of triangle orbifolds, elliptic case. Now consider the orbifold (P1, 2p0 +
2p1 +mp2). Then (P1, 2p0 + 2p1) is a suborbifold, which is uniformized by P1 via
ϕ2. Hence, there is a covering as in Figure 2.5, where q0 := [1 : 1], q1 := [1 : −1],

m

m

m
2

2
φ
2

Figure 2.5. The covering ϕ2 : (P1,mq0 +mq1) → (P1, 2p0 + 2p1 +mp2)

so that {q0, q1} = ϕ−1
2 (p2). One can map (P1,mq0 +mq1) onto (P1,mp0 +mp1) by

a projective transformation. Since this latter orbifold is uniformized by ϕm, one
has a chain of coverings

P
1 ϕm→ (P1,mq0 +mq1)

ϕ2→ (P1, 2p0 + 2p1 +mp2)

Then ϕ2 ◦ϕm is the uniformization of the dihedral orbifold (P1, 2p0 + 2p1 +mp2).
(The covering ϕ2 ◦ϕm is Galois since it is universal). Now consider the octahedral
orbifold (P1, 2p0 + 4p1 + 3p2). There is a covering

ϕ2 : (P1, 2p1 + 3q0 + 3q1) → (P1, 2p0 + 4p1 + 3p2)

Since any set of three points can be mapped to any set of three points on P1, one
has (P1, 2p1 + 3q0 + 3q1) ' (P1, 3p0 + 3p1 + 2p2). This latter orbifold admits the
covering

ϕ3 : (P1, 2r0 + 2r1 + 2r2) → (P1, 3p0 + 3p1 + 2p2)

where r0 = [1 : 1], r1 := [1 : ω], r2 := [1 : ω2] and ω being a primitive cubic root
of unity, so that {r0, r1, r2} = ϕ−1

3 (p2).

Exercice 2.1. Write down the uniformizing map of the octahedral orbifold explic-
itly.

Coverings of triangle orbifolds, parabolic case. Consider the orbifold (P1,Σ2
03pi).

The orbifold (P1, 3p0+3p1) is a suborbifold uniformized by P1 via ϕ3, and ϕ−1
3 (p2) =

{r0, r1, r2} as above. Hence, there is an orbifold covering as in Figure 2.6:
Since any two set of three points on P1 are projectively equivalent, we see

that the orbifold (P1,Σ2
03pi) admits a self-covering. This is not very surprising,

since it is uniformized by the elliptic curve C which admits an automorphism of
order 3, whose quotient is C.

Exercice 2.2. Discover the coverings of the remaining parabolic orbifolds with pa-
rameters (2, 4, 4), (2, 3, 6) and (2, 2, 2, 2) (one can also add the parameters (∞,∞)
and (2, 2,∞) to this list)
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3

3
φ
3

3

3 3 3

Figure 2.6. The covering ϕ3 : (P1,Σ2
03ri) → (P1,Σ2

03pi)

Coverings of triangle orbifolds, hyperbolic case. As an example, consider the orb-
ifold (P1, 5p0 + 5p1 + mp2), which is hyperbolic for any m ∈ Z>1. The orbifold
(P1, 5p0 + 5p1) is a suborbifold uniformized by P1 via ϕ5, and ϕ−1

5 (p2) = {si :=
[1, ξi] | i ∈ [0, 4]}, where ξ is a primitive fifth root of unity. Hence, there is an
orbifold covering as in Figure 2.7.

5

5
φ

m

5

m m

mm

m

Figure 2.7. The covering ϕ5 : (P1,Σ4
0msi) → (P1, 5p0 + 5p1 +mp2)

Now (P1,ms0 +ms1) is a suborbifold of (P1,Σ4
0msi), and it is clear how one

can continue in this manner to get an infinite tower of hyperbolic orbifolds.

3. Orbifold Singularities

Recall that an orbifold germ (X, b)x is a germ that admits a finite uniformization
by a transformation group (Gz ,Mz), where Mz is a smooth germ and Gz is a finite
group acting on Mz and fixes z. According to a classical result of Cartan [4], any
orbifold germ (X, b)x is in fact equivalent to the quotient of the germ Cn

0 by finite
subgroup of GL(n,C). In other words, any orbifold germ (X, b)x admits a finite
uniformization by (G,Cn) where G is a finite subgroup of GL(n,C). Observe that
any finite group appears as a subgroup of GL(n,C) for sufficiently large n. For
small n these subgroups can be effectively classified.

Any finite subgroup of GL(C, 1) ' C∗ is cyclic and is generated by a root
of unity, its orbit space is C and the quotient map is the power map. Hence in
dimension one, any orbifold germ (X, b)x is of the form (C,mO)O , where O ∈ C is
the origin. In higher dimensions, an orbifold germ (X, b)x may have singularities.
Resolution graphs of all orbiface singularities can be found in the appendix to [13].
Let us first consider orbifolds (X, b) with a smooth base space X .

Let G ⊂ GL(n,C). Then G acts on the polynomial ring C[x1, . . . , xn] by

M(P )(x) := P (M−1x)
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The the ring of invariant polynomials under this action is denoted by C[x1, . . . , xn]
G.

Recall that M ∈ GL(n,C) is called a reflection if one of its eigenvalues is a root
of unity ω 6= 1 and the remaining eigenvalues are all 1. A group G ⊂ GL(n,C) is
called a reflection group if it is generated by reflections. By Chevalley’s theorem [5]
the ring C[x1, . . . , xn]G is generated by n algebraically independent homogeneous
invariants if and only if G is a reflection group. In geometrical terms, the quotient
Cn/G is isomorphic to Cn if and only if G is a reflection group. In other words,
germs (X, b)x with a smooth base are in a one-to-one correspondence with finite
reflection groups.

Irreducible finite reflection groups has been classified by Shepherd and Todd [19].
A group G ⊂ GL(n,C) is called imprimitive if Cn can be decomposed as a non-
trivial direct sum of subspaces permuted by G, otherwise it is called primitive.
Matrices permuting the coordinates of GL(n,C) generate the symmetric group
Sn, which is primitive. Aside from Sn and an infinite family of imprimitive groups
G(m, p, n) there are only a finite number of primitive reflection groups, which are
called exceptional reflection groups. There are no exceptional reflection groups in
dimensions ≥ 9.

Observe that if G is a subgroup of GL(n,C) then its projectivization PG is
a subgroup of PGL(n,C). The extension G → PG is central, since its kernel is
generated by the multiples of the identity matrix I . If G is finite, then the kernel
of G→ PG is generated by ωI , where ω is a root of unity.

3.1. Orbiface singularities

The following theorem gives a topological characterization of orbiface germs.

Theorem 3.1. In dimension two, (X, b)x is an orbiface germ if and only its orbifold
fundamental group πorb1 (X, b)x is finite.

Proof. We must show that (X, b)x admits a finite smooth uniformization. Since
πorb1 (X, b)x is finite, its universal covering is a finite covering by a simply con-
nected germ. In dimension two, a simply connected germ is smooth by Mumford’s
theorem [14] (this is wrong in dimensions > 2, see [3] for a counterexample). The
other direction is clear. �

We will mostly consider orbifaces with a smooth base. The following result
characterizes their germs.

Theorem 3.2. All orbiface germs with a smooth base are given in the table below.

qp
q

p
r

p

(n,m)
p q

(n)

p q

r
(n)

2

q

(2,n)
2

2

(2,3)

1 2 3 4 5 6 7
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No Equation Condition Order
1 xy −− pq
2 xy(x + y) 0 < ρ := 1

p + 1
q + 1

r − 1 4ρ−2

3 xn − ym (gcd(n,m) = 1) 0 < ρ := 1
n + 1

m + 1
p − 1 4

nmρ
−2

4 x2 − y2n (n ≥ 2) 0 < ρ := 1
p + 1

q + 1
n − 1 4

nρ
−2

5 y(x2 − y2n) 0 < ρ := 1
p + 1

q + 1
nr − 1 4

nρ
−2

6 y(x2 − yn) (n odd) −− 2nq2

7 x(x2 − y3) −− 96

Table 2. Orbiface germs with a smooth base

In dimension 2, Yoshida observed the following facts (see [24]): If H ⊂
GL(2,C) is a reflection group with a non-abelian PG, then among the reflec-
tion groups with the same projectivization there is a maximal one G containing
H . Every reflection group K with PK = PG is a normal subgroup of this maximal
reflection group. In other words, the germ C2/K is a Galois covering of C2/G. If G
is maximal reflection group, then the quotient C2/G is familiar from Example 2.6;
it is the orbiface (C2, pX+qY +rZ) for some (p, q, r) with 1/p+1/q+1/r−1> 0,
where X , Y , Z are three lines meeting at the origin (recall our convention in 2.6).
Hence any orbiface germ (X, b)x with a smooth base Xx is a covering of the germ
(C2, pX + qY + rZ)0.

3.2. Covering relations among orbiface germs

Below we give some examples of covering relations among orbiface germs.

The abelian germs (C2, pX+qY )0. Abelian reflection groups are always reducible,
and therefore isomorphic to a Z/(p) ⊕ Z/(q) for some p, q. Let us study some
coverings of the quotient orbiface germ, which is equivalent to (C2, pX + qY )0
where X := {x = 0} and Y : {y = 0}. Any smooth sub-orbiface of this orbiface is
of the form (C2, rX + sY )0 where r|p and s|q and r, s ∈ Z≥1. This latter orbiface
germ is uniformized by C2

0 via the map ϕr,s : (x, y) ∈ C2 → (xr , ys) ∈ C2,
with Z/(r) ⊕ Z/(s) as the Galois group. The lifting of (C2, pX + qY )0 to this
uniformization is the orbiface (C2, prX,

q
sY )0. In other words, Z/(r) ⊕ Z/(s) acts

on the orbiface germ (C2, prX,
q
sY )0, and the quotient is (C2, pX + qY )0.

The dihedral germ (C2, 2X + 2Y + mZ)0. Here we discuss the case where m is
odd, the case of even m is left as an exercise. This orbiface has the suborbifaces
(C2, 2X)0, (C2, 2Y )0, (C2,mZ)0, (C2, 2X +2Y )0, (C2, 2Y +mZ)0 and (C2,mZ+
2X)0. Each one of these suborbifaces is uniformized by C2

0 via a bicyclic map ϕp,q ,
note that ϕr,s◦ϕp,q = ϕrp,sq. The uniformizer of (C2, 2X)0 is the map ϕ2,1. Denote

the branch ϕ−1
2,1(Y ) = {y = 0} by Y and the branch ϕ−1

2,1(Z) = {x2 − y = 0} by

Z ′. Hence ϕ2,1 is an orbiface covering

(C2, 2Y +mZ ′)0 → (C2, 2X + 2Y +mZ)0
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Figure 3.8. Coverings of the icosahedral orbiface germ

Now ϕ1,2 is a covering of (C2, 2Y +mZ ′)0 and one has ϕ−1
1,3(Z

′) = {x2 − y2 = 0}.
Put U := {x+ y = 0} and V := {x− y = 0}. There is an orbiface covering

(C2,mU +mV )0 → (C2, 2Y +mZ ′)0

which is related to the suborbiface (C2, 2X+2Y )0 of the initial orbiface (C2, 2X+
2Y + mZ)0. The germ (C2,mU + mV )0 is uniformized by C2 via ϕm,m. Hence
ϕ2,1 ◦ ϕm,m is the uniformization of the dihedral germ (C2, 2X + 2Y +mZ)0.
The icosahedral germ (C2, 2X + 3Y + 5Z)0. This orbiface has the suborbifaces
(C2, 2X)0, (C2, 3Y )0, (C2, 5Z)0, (C2, 2X + 3Y )0, (C2, 3Y + 5Z)0 and (C2, 5Z +
2X)0. Keeping the notations of the preceding paragraph, there is an orbiface cov-
ering

ϕ1,2 : (C2, 3Y + 5Z ′)0 → (C2, 2X + 3Y + 5Z)0

Now ϕ1,3 is a covering of (C2, 3Y + 5Z ′)0, such that ϕ−1
1,3(Z

′) = {x2 − y3 = 0}, so
that there is an orbiface covering

(C2, 5Z ′′)0 → (C2, 3Y + 5Z ′)0

which is related to the suborbiface (C2, 2X+3Y )0 of the initial orbiface (C2, 2X+
3Y + 5Z)0. For coverings corresponding to other suborbifaces, see Figure 3.8.

The black dot on top of Figure 3.8 represents the isolated surface (Du Val)
singularity of type E8 given by the equation S := {(x, y, z) ∈ C3 |x2+y3+z5 = 0}.
It is clear how the projection (x, y, z) → (x, y) defines a Z/(5)-orbiface covering by
this singularity of the the orbiface (C2, 5Z ′′)0. Other coordinate projections define
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respectively Z/(2) and Z/(3)-coverings by the same singularity of the orbifaces
(C2, 2X ′′)0 (C2, 3Y ′′)0, defined in the same way as (C2, 5Z ′′). The germ of S at
the origin is the universal homology covering (i.e. the maximal abelian covering) of
the germ (C2, 2X + 3Y + 5Z)0. Notice that S0 is an orbiface germ with a singular
base space and empty branch divisor.

Exercice 3.1. Study the covering relations among other orbiface germs with a
smooth base. More generally, study the covering relation among orbiface germs
with a singular base and possibly with branch loci.

3.3. Orbifaces with cusps

Many transformation groups (G,M) encountered in practice are not cocompact. In
many cases, the orbit space M/G admits a “nice” compactification. It is possible
to incorporate the compactifications into the orbifold theory by considering pairs
(X, b) with extended b-functions with values in N∪{∞}, and by declaring that the
points with infinite b-value are added in the compactification process. Outside the
points with an infinite b-value, the pair (X, b) remains an orbifold. Lets consider
the case where M is the 2-ball B2, and G is a finite volume discrete subgroup of
Aut(B2). Let (X, b) be the quotient orbifold. Then the germs (X, b)p with b(p) = ∞
are called ball-cusp points. For smooth X , a classification of ball-cusp points was
given in [24]. It turns out that any such germ is a covering of one of the germs (i)
(C2, pH1+qH2+rH3)0 with ρ := 1/p+1/q+1/r = 1 and (ii) (C2, 2H1+2H2+2H3+
2H4)0 where H1, H2, H3 and H4 are smooth branches meeting transversally at the
origin. These germs are uniformized by a transformation group (Γ,C2), where Γ is a
parabolic subgroup of Aut(C2) generated by reflections. The orbifold fundamental
groups of these germs are infinite solvable. Note that many ball-cusp points (with
singular base and branch loci) are coverings of the germs (i) and (ii) above. For
example the germ at the origin of the isolated surface singularity z3 = xy(x − y)
is a triple covering of the germ (C2, 3H1 + 3H2 + 3H3)0 where H1, H2, H3 are
given by the polynomials x, y and x− y. This is called (somewhat paradoxically)
an elliptic singularity, since it is resolved by a blow up which replace the origin by
an elliptic curve.

In case M is the bidisc, the germs (X, b)p with b(p) = ∞ are called cusp
points. In [13] it was shown that the only cusp point with a smooth base is the
germ (C2, 2H1 + 2H2 + 2H3 + 2H4)0 where H1,H2, H3 and H4 are given by the
polynomials x, y and x − y and x − y2. This germ also has an infinite solvable
orbifold fundamental group, and admits several coverings by germs with a singular
base.

4. Orbifaces

Let M be an algebraic surface and let K be its canonical class. The number

c21(M) := K ·K
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is an important numerical invariant of M , and is called the first Chern number of
M . Let e(M) be the the euler number of M (the euler number is also called the
second Chern number of M and denoted by c2(M)). Hirzebruch proved in 1958
the celebrated proportionality theorem: If M is a quotient of the two-ball B2 then
one has

c1(M)2 = 3e(M).

Similarly, if M is a quotient of the bidisc ∆×∆ then the proportionality c1(M)2 =
2e(M) holds. In 1977 Miyaoka and Yau proved the inequality c1(M)2 ≤ 3e(M)
for an arbitrary algebraic surface and the following converse to Hirzebruch’s pro-
portionality theorem: if M satisfies the c1(M)2 = 3e(M) > 0 then either M is
P2 or its universal covering is B2. The analogue of this result for surfaces with
c1(M)2 = 2e(M) > 0 is not correct.

Chern numbers are invariants of algebraic surfaces, but they have orbifold
versions. Below we introduce the Chern numbers for orbifolds over the base P2

only.

Definition 4.1. Let (P2, b) be an orbiface with the associated divisorDb = Σk1miBi,
the curves Bi being irreducible of degree di for i ∈ [1, k]. The orbifold Chern
numbers of (P2, b) are defined as

c21(P
2, b) :=

[
−3 +

∑

i∈[1,k]

di
(
1 − 1

mi

)]2

e(P2, b) := 3 −
∑

i∈[1,k]

(
1 − 1

mi

)
e(Bi\Sing(B)) −

∑

p∈Sing(B)

(
1 − 1

b(p)

)

(If (P2, b) is an orbiface with cusp points set 1/b(p) = 0 whenever b(p) = ∞).

The orbifold Chern numbers have the following property: if M → (X, b) is a
finite uniformization with G as its Galois group, then

e(M) = |G|e(X, b) and c21(M) = |G|c21(X, b) (4.1)

The following orbiface analogue of the Miyaoka-Yau theorem was proved in
1989. We refer the reader to [13] for an introduction to metric uniformization
theory of algebraic surfaces.

Theorem 4.2. [Kobayashi, Nakamura, Sakai] Let (P2, b) be an orbiface of general
type, possibly with ball-cusp points. Then c21(P

2, b) ≤ 3e(P2, b), the equality holding
if and only if (P2, b) is uniformized by B2.

4.1. Orbifaces (P2, D) with an abelian uniformization

Consider an orbifold (P2, D) where D = Σk1miHi where Hi are irreducible and let
B := ∪k1Hi be the support of D. Suppose (P2, D) admits a uniformization with an
abelian Galois group. Then for any point p, the local groups πorb1 (P2, D)p must be
abelian since these groups inject into the Galois group. Nodes are the only orbifold
singularities with a smooth base and an abelian fundamental group. Hence B must
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be a nodal curve. Then by the Zariski conjecture proved by Deligne and Fulton,
the group π1(P

2\B) is abelian and admits the presentation

π1(P
2\B) '

〈
µ1, . . . , µk

∣∣∣
k∑

1

diµi = 0
〉

where di := deg(Hi). Therefore the group πorb1 (P2, D) is finite abelian and admits
the presentation

πorb1 (P2, D) '
〈
µ1, . . . , µk

∣∣∣m1µ1 = · · · = mkµk =

k∑

1

diµi = 0
〉

Since the subgroup of the group 〈µ1, . . . , µk |m1µ1 = · · · = mkµk = 0〉 generated
by 〈Σk1diµi〉 is of order lcm{mi/ gcd(mi, di) | i ∈ [1, k]}, we find that

|πorb1 (P2, D)| =

∏k
1 mi

lcm{bi | i ∈ [1, k]} (4.2)

where bi := mi/ gcd(mi, di).
We claim that if (P2, D) admits a uniformization, then irreducible compo-

nents of B must be smooth: Assume the contrary; e.g. suppose that Hi has a
node at p ∈ P2. The local orbifold fundamental group of this node admits the
presentation

πorb1 (P2, D)p ' 〈µp, µ′
p |miµp = miµ

′
p = 0〉 ' Z/(mi) ⊕ Z/(mi)

where µp and µ′
p are meridians of the branches of Hi meeting at p. Since Hi

is irreducible, µp and µ′
p are conjugate elements in πorb1 (P2, D). Since this latter

group is abelian, one actually has µp = µ′
p. Hence, the subgroup of πorb1 (P2, D)

generated by µp and µ′
p is at most Z/(mi) and can not be isomorphic to the local

orbifold fundamental group at p, which is Z/(mi) ⊕ Z/(mi).
Suppose that (P2, D) is an orbiface with a nodal locus, whose irreducible com-

ponents are all smooth. Since the group πorb1 (P2, D) is finite, either (P2, D) is not
uniformizable or there is a finite universal uniformization. Hence by Theorem 2.4,
(P2, D) is uniformizable if for every p ∈ P2, the image of the inclusion-induced
map

ρ ◦ ι∗ : πorb1 (P2, D)p → πorb1 (P2, D) (4.3)

is an injection.
For a point in P2\B the local orbifold fundamental group is trivial, so that

ρ◦ι∗ is always an injection. Now let p ∈ Hi\Sing(B). Then πorb1 (P2, D)p ' Z/(mi),
and ρ ◦ ι∗ is an injection only if the condition below is satisfied:

Condition 1. For any i ∈ [1, k], the subgroup 〈µi〉 is of order mi in πorb1 (P2, D).

(The notation 〈A〉 means the subgroup generated by the subset A). Finally, if p is
a point of intersection of Hi and Hj , (i 6= j) then

πorb1 (P2, D)p = πorb1 (P2,miHi +mjHj)p ' Z/(mi) ⊕ Z/(mj),



Orbifolds and their uniformization 25

and ρ ◦ ι∗ is injective only if the following condition is satisfied:

Condition 2. For any pair of distinct integers i, j ∈ [1, k], the subgroup 〈µi, µj〉 is
of order mimj in πorb1 (P2, D).

Obviously, Condition 2 implies Condition 1 (since any two curves intersects in P2).
Let D− (miHi +mjHj) be the divisor obtained from D by removing Hi and Hj .
Then Condition 2 is equivalent to

|πorb1 (P2, D)| = |〈µi, µj〉||πorb1 (P2, D − (miHi +mjHj))| ∀i, j ∈ [1, k], (i 6= j)

By (4.2), this is equivalent to the condition

∏k
1 mi

lcm{bi | i ∈ [1, k]} =

∏k
1 mi

lcm{bi | i ∈ [1, k]\{i, j}} ∀i, j ∈ [1, k], (i 6= j)

⇔ lcm{bi | i ∈ [1, k]} = lcm{bi | i ∈ [1, k]\{i, j}} ∀i, j ∈ [1, k], (i 6= j) (4.4)

Finally, one has the following condition, equivalent to Condition 2:

Condition 3. Any prime power dividing one of b1, . . . , bk must divide at least two
others.

We have proved the following theorem:

Theorem 4.3. Let D = Σk1miHi where Hi are irreducible of degree di and let
B := ∪k1Hi. Then (P2, D) is an orbiface with an abelian uniformization if and
only if B is a nodal curve whose irreducible components are all smooth, and the
numbers b1, . . . , bk satisfies Condition 3, where bi := mi/ gcd(mi, di).

Let p be a prime, α ∈ Z>0 and take numbers αi ∈ [0, α] for i ∈ [4, k]. Then
the vector

[pα, pα, pα, pα4 , pα5 , . . . , pαk ],

as well as any of its permutations, satisfies Condition 3. Any vector [b1, . . . , bk]
satisfying Condition 3 admits a unique factorization into a product of such vectors
with distinct p (where the product is taken component-wise).

For k ≤ 2 Condition 3 is satisfied only if b1 = b2 = 1, that is when mi divides
di (i = 1, 2). For k = 3, it is satisfied only if b1 = b2 = b3. Some solutions for k = 4
can be given as

[b1, b2, b3, b4] = [p3, p3, p3, p] ~ [q2, q6, q6, q6] ~ [r, r, r, r] . . .

where p, q, r are distinct primes and ~ is the operation of component-wise multi-
plication. In general, Condition 3 is always satisfied if k ≥ 2 and b1 = · · · = bk.

Exercice 4.1. The study of algebraic surfaces from the point of view of possible
values of (c21, e) ∈ Z>0 ×Z>0 is called the surface geography. Study the geography
of abelian uniformizations of P2.
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Orbifaces with a linear locus. Now suppose that B = ∪k1Hi is a line arrangement.
By Theorem 4.3 the lines H1, . . . , Hk must be in general position. Then di = 1
for i ∈ [1, k], so that bi = mi. Obviously Condition 3 is not satisfied unless k ≥ 3,
except the trivial case b1 = b2 = 1. As we have already seen, in case k = 3 and
m1 = m2 = m3 =: m the uniformizing surface is P2 itself, with the polycyclic map

ϕm : [z1 : z2 : z3] ∈ P
2 → [zm1 : zm2 : zm3 ] ∈ P

2

as the uniformizing map, where we assumed Hi = {zi = 0} for i = 1, 2, 3.
The orbifold (P2,Σ4

12Hi) is uniformized by P1 × P1. Indeed, (P2,Σ3
12Hi) is

a suborbifold which is uniformized by P
2 via ϕ2, and the lifting of (P2,Σ4

12Hi)
to this uniformization is the orbifold (P2, 2Q), where Q ' ϕ−1

2 (H4) is a smooth
quadric. This latter orbifold is uniformized by P1 ×P1 as we shall show below (see
Theorem 4.5).

Note that the orbifaces (P2, D) may admit intermediate uniformizations (e.g.
uniformizations which are not universal). For example, consider the case D =
Σ6

12Hi. There is a surjection of degree 2

πorb1 (P2, D) '
〈
µ1, . . . , µ6

∣∣∣ 2µ1 = · · · = 2µ6 =
6∑

1

2µi = 0
〉

�

〈
µ0, . . . , µ5

∣∣∣ 2µ1 = · · · = 2µ6 = µ1+µ2+µ3 = µ4+µ5+µ6 = 0
〉

Then the latter group G satisfies Condition 2, hence there is a uniformization with
G as the Galois group. The uniformizing surface is an Enriques surface N . As we
shall below, the universal uniformization of (P2,Σ6

12Hi) is a K3 surface, which is
a double covering of N . Observe that the arrangement of hyperplanes ∪6

1Hi is not
projectively rigid, so that (P2,Σ6

12Hi) is in fact an orbiface family.

4.1.1. K3 orbifaces. A simply connected algebraic surface M with c21(M) = 0 is
called a K3 surface. It is known that all K3 surfaces have the same euler number,
which is 24. An orbiface uniformized by a K3 surface M is called a K3 orbiface.
Since M is simply connected, this uniformization must be universal. Let (P2, D)
be a K3 orbiface uniformized by the K3 surface M , where D = Σk1miHi and Hi is
an irreducible and reduced curve of degree di. Put B = ∪k1Hi, then B is of degree
d = Σk1di. Then

c21(P
2, D) =

c21(M)

|πorb1 (P2, D)| = 0 (4.5)

and

e(P2, D) =
e(M)

|πorb1 (P2, D)| =
24

|πorb1 (P2, D)| (4.6)

Equation 4.5 implies that

∑

i∈[1,k]

di
(
1 − 1

mi

)
= 3 ⇔

∑

i∈[1,k]

di
mi

= d− 3 (4.7)
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which in turn implies that 4 ≤ d ≤ 6. Equation 4.6 implies that 24/e(P2, D) must
be an integer, which equals the order of the orbifold fundamental group. Under
the assumption that (P2, D) admits an abelian uniformization, this group order
can be computed easily. It is possible to classify all “abelian” K3 orbifaces in this
way, see [20] for details. Let us carry out this program for K3 orbifaces with a
linear support.
Abelian K3 orbifaces with a linear locus. Suppose k = 6. Equation 4.7 implies
Σ6

11/mi = 3, which forcesm1 = · · · = m6 = 2. This orbifold satisfies the conditions
of Theorem 4.3 and is uniformizable. Hence, the universal uniformization is a K3
surface M1. The orbifold fundamental group

πorb1 (P2, D) '
〈
µ1, . . . , µ6

∣∣∣ 2µ1 = · · · = 2µ6 = Σ6
0µi = 0

〉

is of order 32. Let us verify that e(M1) = 24. For anyHi, there are 5 singular points
of B lying on Hi ' P

1, so that e(Hi\Sing(B)) = e(Hi)−e(Sing(B)) = 2−5 = −3.
Since the local orbifold fundamental group at the point Hi ∩Hj is of order mimj ,
one has

e(P2, D) = 3 + 3

6∑

1

(1 − 1

mi
) −

∑

1≤i6=j≤6

(1 − 1

mimj
) =

3

4

so that e(M1) = 32e(P2, D) = 24.
For k = 5 there are no abelian K3 orbifaces with a linear support, this can

be proved by a case by case analysis. Suppose k = 4. Equation 4.7 implies

1

m1
+

1

m2
+

1

m3
+

1

m4
= 1 (4.8)

For anyHi, there are 3 singular points of B lying onHi ' P
1, so that e(Hi\Sing(B)) =

e(Hi) − e(Sing(B)) = 2 − 3 = −1. Suppose without loss of generality that m1 ≤
m2 ≤ m3 ≤ m4. There are finitely many 4-tuples satisfying (4.8). It can be shown
by case-by-case analysis that the only 4-tuples satisfying Condition 3 are [4, 4, 4, 4]
and [2, 6, 6, 6]. Hence, the universal uniformizations of these orbifolds are K3 sur-
faces, say M2 and M3 respectively. On the other hand, assumption 4.8 gives

e(P2, D) =
∑

1≤i6=j≤4

1

mimj

By using the formula |πorb1 (P2, D)| =
∏4

1mi/lcm(m1, . . . ,m4) one can verify that
e(M2) = e(M3) = 24.

Let us now prove that the surface M2 is the Fermat quartic surface, the
hypersurface in P3 defined by the equation M2 : z4

4 = z4
1 +z4

2 +z4
3 . Since any two 4-

line arrangements are projectively equivalent, one can assume that Hi = {zi = 0}
for i ∈ [1, 3], and H4 = {z1 + z2 + z3 = 0}. The suborbifold (P2,Σ3

14Hi) is
uniformized by P2 via ϕ4. Lifting the initial orbifold yields the orbifold (P2, 4K),
where K is the Fermat quartic curve z4 + z4

2 + z4
3 = 0. Now it is easy to see that

the restriction of the projection [z1 : z2 : z3 : z4] ∈ P3 → [z1 : z2 : z3] ∈ P2 to M2

is a Galois covering branched at 4K.
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Exercice 4.2. Classify the abelian K3 orbifaces and study the covering relations
between them.

4.2. Covering relations among orbifaces (P2, D) uniformized by P2

p

q

0

3

K

m1

m m2

m

Figure 4.9. The orbiface (P2,Σ3
0miHi)

Now let us consider the simplest orbiface with a non-abelian fundamental
group. Let H0 := {x = 0}, H1 := {y = 0}, H2 := {x = y} and H3 := {z =
0} be four lines in P2. Observe that the arrangement ∪3

0Hi is projectively rigid.
Consider the orbiface (P2, D) where D = Σ3

0miHi The point p := [0 : 0 : 1] is
an orbiface germ only if Σ2

01/mi > 1. Assume this is the case. Consider another
line K through p. Take a base point ? ∈ K, a meridian µp ⊂ of p ∈ K and
a meridian µ3 ⊂ K of the point q := K ∩ H3 ∈ K (see Figure 4.9). Since K
is topologically a sphere, the loop µpµ3 is contractible in K\{p, q} and hence in

P2\(∪3
0Hi). Hence, µp = µ−1

3 in the group πorb1 (P2, D). In particular, these two
meridians are of the same order. Now let mp be the order of µp, considered as an
element of πorb1 (P2, D)p. If the orbiface is uniformizable, this latter group injects
into the global orbifold fundamental group. Hence, if (P2, D) is uniformizable, the
element µp, and therefore the element µ3 must be of order mp π

orb
1 (P2, D) . In

other words, m3 = mp = 2(Σ2
0mi − 1)−1. Hence, (m0,m1,m2,m3) must be one of

(2, 2, r, 2r), (3, 3, 2, 12), (2, 4, 3, 24) or (2, 3, 5, 60).

Exercice 4.3. Compute the Chern numbers of these orbifolds and check that
c21(P

2, D) = 3e(P2, D).

The case (2, 2, r, 2r): Observe that (P2, 2H0 + 2H1 + 2H3) is a suborbiface of
(P2, 2H0 + 2H1 + rH2 + 2rH3). This suborbiface is uniformized by P2 via the
bicyclic covering

ϕ2 : [x : y : z] ∈ P
2 → [x2 : y2 : z2] ∈ P

2

The lifting ϕ−1
2 (H2) consists of two lines given by the equation x2 = y2, which

we denote by H1
2 and H2

2 . Denote ϕ−1
2 (H3) by H3 again. Hence ϕ2 is an orbiface
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covering

ϕ2 : (P2, rH1
2 + rH2

2 + rH3) → (P2, 2H0 + 2H1 + rH2 + 2rH3)

Obviously, the covering orbiface is uniformized by P
2 via ϕr.

The case (2, 4, 3, 24): Observe that (P2, 2H0 + 2H1 + 2H3) is a suborbiface of
(P2, 2H0 + 4H1 + 3H2 + 24H3). Let ϕ2 be its uniformization, denote ϕ−1

2 (H1) by

H1 and ϕ−1
2 (H3) by H3. As in the previous case, denote the lines ϕ−1

2 (H2) by H1
2

and H2
2 . Hence there is an orbiface covering

ϕ2 : (P2, 3H1
1 + 3H2

1 + 2H2 + 12H3) → (P2, 2H0 + 4H1 + 3H2 + 24H3)

Observe that the covering orbiface is equivalent to the orbiface (P2, 3H0 + 3H1 +
2H2 + 12H3)

The case (3, 3, 2, 12): Observe that (P2, 3H0 + 3H1 + 3H3) is a suborbiface of
(P2, 3H0 + 3H1 + 2H2 + 12H3). This suborbiface is uniformized by P2 via the
bicyclic covering

ϕ3 : [x : y : z] ∈ P
2 → [x3 : y3 : z3] ∈ P

2

The lifting ϕ−1
3 (H2) consists of two lines given by the equation x3 = y3, which we

denote by H1
2 , H2

2 and H3
2 . Denote ϕ−1

2 (H3) by H3 again. Hence ϕ3 is an orbiface
covering

ϕ3 : (P2, 2H1
2 + 2H2

2 + 2H3
2 + 4H3) → (P2, 3H0 + 3H1 + 2H2 + 12H3)

The covering orbiface appeared in the first case with r = 2 and is uniformized by
P2.

4.3. Orbifaces (P2, D) uniformized by P1 × P1, C × C and ∆ × ∆

It is well known that the quotient of P1 × P1 under the obvious action of the
symmetric group Σ2 is the projective plane. To put in another way, one has the
following fact:

Lemma 4.4. Let Q ⊂ P2 be a smooth quadric. Then there is a uniformization
ψ : Q×Q → (P2, 2Q). Let p ∈ Q and put T vp := {p} ×Q, T hp := Q× {p}. Then

Tp := ψ(T hp ) = ψ(T vp ) ⊂ P2 is a line tangent to Q at the point p ∈ Q.

Proof. Since any two smooth quadrics are projectively equivalent, it suffices to
prove this for a special quadric. Consider the Z/(2)-action defined by (x, y) ∈
P1 × P1 → (y, x) ∈ P1 × P1. The diagonal Q = {(x, x) : x ∈ P1} is fixed under
this action. Let x = [a : b] ∈ P

1 and y = [c : d], then the symmetric polynomials
σ1([a : b], [c : d]) := ad + bc, σ2([a : b], [c, d]) := bd, σ3([a : b], [c : d]) := ac are
invariant under this action, and the Viéte map

ψ : (x, y) ∈ P
1 × P

1 −→ [σ1(x, y) : σ2(x, y) : σ3(x, y)] ∈ P
2

is a branched covering map of degree 2. The branching locus ⊂ P2 can be found
as the image of Q. Note that the restriction of ψ to the diagonal Q is one-to-one,
so that one can denote ψ(Q) by the letter Q again. One has ψ(Q) = [2ab : b2 : a2]
([a : b] ∈ P1), so that Q is a quadric given by the equation 4yz = x2. One
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Figure 4.10. The covering (P1 × P
1, aQ+ Σn0mi(T

v
i + T hi )) −→

(P2, 2aQ+ Σn0miTi)

can identify the surface P1 × P1 with Q × Q, via the projections of the diagonal
Q ⊂ P1 × P1. Let p ∈ Q, and put T hp := Q × {p}, T vp : {p} × Q. Then Tp :=

ψ(T hp ) = ψ(T vp ) ⊂ P2 is a line tangent to Q. Indeed, if p = [a : b], then ψ(T hp )

is parametrized as [cb + da : db : ca] ([c : d] ∈ P1), and can be given by the
equation b2z + a2y − abx = 0, which shows that Tp is tangent to Q at the point
[2ab : b2 : a2]. �

Now let Q ⊂ P2 be a smooth quadric and T0, . . . , Tn tangents to Q at distinct
points pi := Q ∩ Ti, i ∈ [0, n]. The configuration Q ∪ T0 ∪ T1 ∪ T2 is called the
Apollonius configuration. Consider the orbiface (P2, aQ+Σn0miTi). By Theorem 3.2
this is an orbiface provided 1/a + 1/mi ≥ 1/2. An immediate consequence of
Lemma 4.4 is the following result.

Proposition 4.5. There is an orbiface covering

(P1 × P
1, aQ+ Σn0mi(T

v
i + T hi )) −→ (P2, 2aQ+ Σn0miTi)

In particular, when a = 1, there is an orbiface covering

(P1,Σn0mipi) × (P1,Σn0mipi) −→ (P2, 2Q+ Σn0miTi)

By Theorem 1.4, the covering orbiface above is uniformized by P1 × P1 if n = 1
and m0 = m1, or if n = 2 and Σ2

01/mi > 1. Hence the following orbifaces are
uniformized by P1 × P1.
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Figure 4.11. Orbifaces uniformized by P1 × P1

Similarly, the following orbifaces are uniformized by C × C.
Otherwise, the orbifolds (P2, 2Q+ΣmiTi) are uniformized by the bidisc ∆×∆.

The orbifaces in Figure 4.11 were first discovered in 1982 by Kaneko, Tokunaga and
Yoshida who also gave a complete classification of the orbifaces (P2, D) uniformized
by C × C (see [11]). Note that the Apollonius configuration is projectively rigid.
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Figure 4.12. Orbifaces A uniformized by C × C

Except the first and the fifth orbifolds in Figure 4.11 these orbifolds admits liftings
to P2 and gives rise to new orbifaces uniformized by C × C. Below we shall study
the coverings of the fourth orbiface in detail.
Coverings of the orbiface (P2, 2Q+ 2T0 + 4T1 + 4T2). This orbiface has the sub-
orbifold (P2, 2T0 + 2T1 + 2T2), which is uniformized by P

2 via ϕ2. We can assume
that in projective coordinates the tangent lines are given by Ti := {zi = 0}, in
these coordinates ϕ2 is the map [z0 : z1 : z2] → [z2

0 : z2
1 : z2

2 ]. A quadric tangent to
both the lines z0z1z2 = 0 is given by the equation a

√
z0 + b

√
z1 + c

√
z2 = 0. Hence

ϕ−1
2 (Q) is given by ±az0 ± bz1 ± cz2 = 0, in other words the lifting of Q consists

of four lines ϕ−1
2 (Q) := Q1 ∪ Q2 ∪ Q3 ∪ Q4 which meets two by two on the lines

z0z1z2 = 0. The arrangement T1∪T2∪4
1Qi is known as the complete quadrilateral,

since it is the set of lines through two points among four points in general position
in P2 (see Figure 4.13).

Figure 4.13. The complete quadrilateral

Hence the lifting of (P2, 2Q+2T0+4T1 +4T2) is the orbifold (P2, 2T1 +2T2 +
Σ4

12Qi). Since any two sets of 4 points in general position in P
2 are projectively

equivalent, the complete quadrilateral is projectively rigid. Hence there are projec-
tive coordinates in which the locus of (P2, 2T1 +2T2+Σ4

12Qi) is given by the equa-
tion z0z1z2(z0−z1)(z1−z2)(z2−z3) = 0, which is another equation for the complete
quadrilateral. Let us name these lines L1, . . . , L6 respectively. Now (P2,Σ3

12Li) is
a suborbifold of (P2,Σ6

12Li). This orbifold is uniformized by P2 via ϕ2. The liftings
of L4, L5, L6 are given by the equation (z2

0 − z2
1)(z2

1 − z2
2)(z2

2 − z2
3) = 0. But this

is another equation for the complete quadrilateral. This shows that the orbiface
(P2, 2T1 + 2T2 + Σ4

12Qi) admits self coverings and proves the following result.

Lemma 4.6. The orbiface (P2, 2Q + 2T0 + 4T1 + 4T2) has an infinite tower of
coverings.

Observe the analogy with the one-dimensional case: The orbifold (P1, 2p0 +
3p1 + 6p2) is covered by (P1, 30 + 3p1 + 32), which admits self-coverings.

For a higher dimensional version of the results in this subsection, see [22].
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4.4. Covering relations among ball-quotient orbifolds

The orbifaces (P2, aQ+ Σ2
0miTi) supported by the Apollonius configuration were

throughly studied in [10] and [21]. The Chern numbers of (P2, aQ+ Σ2
0miTi) are

given by

c21 =

[
2 − 2

a
−

3∑

1

1

mi

]2

e = 1 − 1

a
−

3∑

1

1

mi
+

∑

1≤i6=j≤3

1

mimj
+

1

2

3∑

1

[
1

mi
+

1

a
− 1

2

]2

One has

(3e− c21)(P
2, aQ+ Σ2

0miTi) =
1

2

[
3∑

1

1

mi
− 1

a
− 1

2

]2

(4.9)

which vanishes for the following orbifaces
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Figure 4.14. Orbifolds A uniformized by B2

By Theorem 4.2 these orbifolds are uniformized by the 2-ball. Observe that
the orbiface (P2, 2Q + 2T0 + 4T1 + 4T2) is a suborbifold of the first orbiface in
Figure 4.14. By Lemma 4.6 this suborbifold admits an infinite tower of coverings.
The orbiface (P2, 4Q+4T0 +4T1 +4T2) can be lifted to these coverings, and these
liftings give an infinite tower of orbifaces uniformized by the 2-ball. Since the group
πorb1 (P2, 4Q + 4T0 + 4T1 + 4T2) is Picard modular, this tower is called a Picard
modular tower.

Exercice 4.4. Find the first three steps of the Picard modular tower.

Exercice 4.5. Study the coverings of the ball-quotient orbifolds in Figure 4.14.

Question 4.1. The orbifaces (P2, 3Q+3T0+4T1+2T2) and (P2, 6Q+2T0+3T1+3T2)
satisfy 2e− c21 = 0. What is their universal uniformization?
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