More Zariski Pairs and Finite Fundamental
Groups of Curve Complements

A. Muhammed Uludag

Abstract. We give a recipe for finding new examples of plane curves with
a finite non-abelian fundamental group of the complement and new examples
of Zariski pairs of plane curves.

1. Introduction. Let C' C P? be an irreducible algebraic curve of degree
d; we are interested in the fundamental group m (P*\C) of its complement.
This group will be called the group of C' in the sequel.

There are many examples of irreducible curves with abelian groups: By
the Zariski conjecture proved by Deligne and Fulton, m (P?\C) ~ Z/dZ
whenever C' is nodal (see [5]). On the other hand, most of the known non-
abelian curve groups turns out to be infinite (see [6] for a survey of known
71 (P2\C)’s). Oka raised the problem of finding examples of finite non-abelian
curve groups (see [12]).

The first example of a curve with a finite non-abelian group, namely
the 3-cuspidal quartic, was given by Zariski [17]. The group of the rational
quintic with three double cusps was found to be non-abelian of order 320 by
Degtyarev [4]. Several infinite series of curves with a finite non-abelian group
were obtained by Degtyarev [4], Oka [11], and Shimada [13], [12]. The main
result of this article is the following theorem, supplying further evidence that
there are many curves with finite non-abelian groups.

Theorem 1 Let G be a curve group. Then, for any n € N, there is a central
extension H of G by the cyclic group of order n, such that H is also a curve
group. Hence, if G is a finite non-abelian group of order |G|, then H is a
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finite non-abelian group of order |H| = n|G|. If G is almost solvable, then
sois H.

One important reason for studying the group m; (P?\C) is that this group
is a strong invariant of the curve C' C P?, and it can distinguish curves
having the same singularities. The first example of this phenomenon is due
to Zariski [17]: The group of a sextic C; with six cusps lying on a conic is
Z./27 x 7] 3Z, whereas, if Cy is another sextic with six simple cusps not lying
on a conic, then the group of Cy is Z /27 x Z/3Z. A pair of curves of the
same degree and with the same singularities, but with non-homeomorphic
complements is called a Zariski pair. Many examples of Zariski pairs are
known now (see [2] [3], [10], [14]), but probably the strongest result up-to
date has appeared in [9], where it is shown that there exists an infinite family
of Zariski k-tuples (Cy, Cs, . .., Cy) for each k € N. Cremona transformations
we describe below can be used to obtain more examples of Zariski pairs from
the known ones (see Theorem 3).

The technique we employ has been introduced by Degtyarev [4] and elab-
orated by Artal [1]. The underlying idea is the following: If a curve C is
obtained from a simpler curve C' by means of a Cremona transformation ¢ :
P? — P2, then ¢ induces a biholomorphism P?\(C'U A) = P?\(C'UB), where
A, B are some line arrangements. Hence i (P2\(C U A)) ~ m; (P2\(C' U B))
and if the former group is known, then 7; (P2\C) can be obtained by adding
the relations corresponding to the gluing of B. We use this method in the
opposite sense, i.e. given a curve C' with a known group, we apply some
Cremona transformations in a way that the group 7 (P?\(C U A)) and the
relations corresponding to the gluing of B are fairly simple. In the form we
use them, these Cremona transformations are taken from [7], where certain
series of rational cuspidal curves have been constructed and classified.

2. Recipe. Let X be a surface, C C X be a curve, with a smooth point
p € C, and x € X\C be a base point. Define a meridian p of C at p to
be a loop drawn as follows: Let A be a smooth analytic branch meeting C
transversally at p. Connect * to the boundary of A by a path w in X\C, and
put p:=w-6-wt, where § is the boundary of A, oriented counterclockwise.
The homotopy class of x in X \C defines an element of the group 71 (X \C, *),
but we shall take the liberty to consider u directly as an element of 7, (X \C),
and we shall omit base points when this do not lead to any confusion.

It is well known that if p, ¢ lie on an irreducible component of C, then the
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corresponding meridians are conjugate elements of the fundamental group,
and, moreover, if such meridians p1, ... i, are taken one for each irreducible
component of C, then one has

1 (X) = m(X\C)/{pas - - - 5 ta))s

with {1, . - ., tn)) being the smallest normal subgroup of 7; (X \C') generated
by p1,..., p,. If a presentation of m (X\C') is given, then passing to the
quotient above amounts to adding the relations p; = ...u, = 1 to this
presentation.

Theorem 1 will be obtained as a corollary of the following one:

Theorem 2 For a curve C C P? and a line Q C P?, let p be_a meridian of
Q i P2\C. Then for each n €N, there exists a plane curve C C P? with

™ (P\C) = m (P*\(C' U Q))/{u"*")-

The curve C is obtained as the image of C by a Cremona transformation
P? — P2

Proof. Let O € Q\C be a point and take another line P passing through
O. Blowing-up P? at O, we get the Hirzebruch surface F; (see Figure 1; the
other figures show the construction we give below for n = 1). Denote the
exceptional section of this blow-up by FE;, and the proper transforms of C|
P, Q by C4, P, and ;. Now perform an elementary transformation at the
point g; := @ N E;. Recall that this transformation consists in blowing-up
the point ¢, followed by the contraction of @ (see Figure 2). The resulting
surface is the Hirzebruch surface F,, the proper transform Es of F; is the
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exceptional section of F, with E2 = —2. Denote by @, the blow-up of the
point ¢;. Then @, is a fiber of the ruling F, — P'. Let P, and C, be the
proper transforms of P; and C;. Applying another elementary transformation
at ¢o := Q2 N Es, and continuing in this manner n times, we end up with the
Hirzebruch surface F,, . with E, 1, P11, Qni1, Che1 C Fuyq, the exceptional
section satisfying E., , = —n — 1.

We proceed by applying an elementary transformation at a point p, 1 €
P i1\ (Ent1 UChyq) (see Figure 3). This increases by 1 the self-intersection
number of the exceptional section, so one obtains the Hirzebruch surface
F,. Denote by P,.s the fiber replacing P, (i.e. P,i2 is the blow-up of
Pnt1), and put Qnio, Enie, Chio for the proper transform of Q,i1, Fniq
and Cy11, where E?,, = —n. Pick a point ppio € Ppyo\(Enta U Cpya) and
apply another elementary transformation at p, .. Iterating this procedure n
times, we get the Hirzebruch surface F; with Fo, 1, Popy1, Qont1, Cony1 C Fy.

The exceptional section satisfies F3,,, = —1, so it can be contracted, this



transforms I, into the projective plane ]P’i Denote the images of P, 1,
Q2n+1, Cony1 under this contraction by P, @, C'. Notice that if P and @ are
transversal to C, then in addition to the singularities of C, the curve C has
two bad singularities, one at the point P N @, the other one on the line Q
(In general, the curve C may have less singular points then C, as the above
process glues all the singularities of C' lying on P (or Q) into one singular
point.)

The composition of the birational maps transforming C to C yields a
biholomorphism

PA\(CUPUQ) =P\(CUPUQ),
which in turn induces an isomorphism
m(P’\(CUPUQ)) ~m(P\(CUPUQ)).

Hence, the group 7 (P2\C) can be recovered from m (P2\(C U P U Q)) b
adding the relations which correspond to gluing the lines P and @

In order to find these relations, let us first make some observations. Let
p € C be a singular point of a curve C C P2, and A be a smooth analytical
branch meeting C transversally at p. Let * € P?\C be a base point. Take a
path w joining * to a boundary point of A, and put y, := w-§-w™", where §
is the boundary of A, oriented in the positive sense. Let us call such a loop
a meridian of C' at the singular point p. It is easily seen that two meridians
of C at a singular point p are conjugate elements in the group 7 (P?\C).

Now let 0, : X — P? be the blow-up of the plane at p. Denote the proper
transform of C by the same letter and the exceptional section by E. As the
proper transform of the branch A meets E transversally, at a point ¢ € E\C,
we have the following claim:

Claim. The loop o,'(up) in X\(C U E) is a meridian of E at a point
g€ E\C.

Since 71 (P*\C) = 7,(X\(C' U E)), there is no confusion in denoting o, (1s,)
by 1.

In virtue of the following simple observation, there is one particular case
where the loop p, can be found easily, this is the content of the following
lemma:



Lemma (Fujita [8]) Let B be a ball centered at the origin O of C*, and con-
sider the curve C defined by x?> —y? = 0. Ewvidently, C has an ordinary double
point at the origin, and m (B\C,*) = Z?, where x € B\C is a base point.
Take meridians o, B of C' on the branches x = y and x = —y respectively.
Then af is a meridian of C at the node O.

Returning to the computation of the group of the curve 5, we let B be a
small ball around the intersection point O = PN (@), and take meridians a of
P and f of Q as in Fujita’s lemma. By this lemma, af is a meridian of F)
in the surface Iy, the blow-up of P? at O (see Figure 1). Now we apply the
Fujita lemma to the points ¢; recursively, and get that («f3)"3 is a meridian
of Q (see Figure 2). Other elementary transformations are performed at
non-singular points of P; U C;, which leaves the meridian o of P; unchanged.
Hence, « is a meridian of P. We conclude that

™ (P\C) = m (P\(C U PUQ))/{a, ).

Since « is a meridian of P, passing to the quotient by the normal subgroup
(o)) C m (P?\(CUPUQ)) amounts to gluing P to P*\(C UPUQ). On the
other hand being both meridians of (), the elements p and [ are conjugate
in the group m;(P?\(C U Q)), whence

m(P\C) = m (B*\(C U Q))/(B") = m(P\(CUQ))/(u"".
This proves Theorem 2. O

Proof of Theorem 1. Now suppose that the line () intersects C transver-
sally. Then the meridian 3 is a central element of the group 7, (P*\(C'UQ)).
This result can be traced back to Zariski, and is proved by applying the
Zariski-Van Kampen algorithm [16] to the projection ¢ : P?\(CUQU{0}) —
L. Here, the point O is the center of projection with O € Q\C, and L is a
line not passing through the point O and not contained in C'. Take a fiber F'
of ¢ close to @, and pick a geometric basis B := {by, ..., b} for m (F\C, %),
where x := L N F. For a meridian of (), one can take a simple loop 7 in
L around the point () N L. Because of the transversality, the monodromy
around @ gives the relations y~1b;y = by, i.e. [y,b;] = 1. But m (P?\(CUQ))
is generated by B, whence 7 belongs to the center of this group. The meridian
1 being conjugate to 7, we obtain vy = p.



It follows that the normal subgroup of 7, (P?\(C' U Q)) generated by p is
isomorphic to Z, so one has the exact sequences

0= Z — m(P*\(CUQ)) — 7 (P\C) = 0,

0= (n+1)Z — m (P?\(C U Q)) — m (P*\C) — 0.

These yield the exact sequence
0= Z/(n+1)Z — m(P2\C) = m (P*\C) — 0,

which proves Theorem 1. O

Remark. Curves with finite groups constructed above provide new examples
of affine curves C\Q C P?\Q ~ C?, intersecting the line at infinity non-
transversally, with a non-abelian, virtually abelian group, e.g. with Z being
a finite index subgroup of 7, (C?\C).

Finally, Cremona transformations as in the proof of Theorem 2 can be
used to obtain new Zariski pairs from the known ones as follows: Suppose
that (C1,Cy) is a Zariski pair, with m; (P?\C}) abelian, and m; (P?\Cs) non-
abelian (as a concrete example one can take Cy, Cy the six-cuspidal sextics
discussed by Zariski). Then an application of the Cremona transformations
as in the proof of Theorem 2 produces two curves Z}'vl, 6’; with the same
singularities (provided that the lines P, @) have been chosen f\/generically).
Then (Cy,Cy) will still be a Zariski pair, since the group of C; is abelian,
whereas the group of Cs is not. We summarize this in the following theorem.

Theorem 3 Suppose that (C1,Cy) is a Zariski pair, such that the group of
C\ 1is abelian, whereas the group of Cy is non-abelian. If the lines P, Q) are
taken to be generic with respect to Cy and Cy then (Cy, Cy) is also a Zariski
pair.

Zariski pairs of curves with many complicated singularities can be ob-
tained by a recursive application of the above Cremona transformations.
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